A novel analysis of the fractional Cauchy reaction-diffusion equations

被引:0
|
作者
Sarwe, Deepak Umarao [1 ]
Raj, A. Stephan Antony [2 ]
Kumar, Pushpendra [3 ,4 ]
Salahshour, Soheil [3 ,5 ,6 ]
机构
[1] Univ Mumbai, Dept Math, Mumbai 400098, Maharastra, India
[2] SNS Coll Engn, Dept Math, Coimbatore, India
[3] Istanbul Okan Univ, Fac Engn & Nat Sci, Istanbul, Turkiye
[4] Near East Univ TRNC, Math Res Ctr, Dept Math, Mersin 10, Nicosia, Turkiye
[5] Bahcesehir Univ, Fac Engn & Nat Sci, Istanbul, Turkiye
[6] Lebanese Amer Univ, Dept Comp Sci & Math, Beirut, Lebanon
关键词
Cauchy reaction-diffusion equations; Caputo fractional derivative; Fractional natural decomposition method;
D O I
10.1007/s12648-024-03411-0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This article considers the Cauchy reaction-diffusion equations and derives the numerical solutions using the fractional natural decomposition method (FNDM). The projected solution approach works without conversion or perturbation. The examples confirm the method's accuracy and reliability, allowing for fractional order studies in real-world problems. Plots and tables validate the accuracy of the proposed scheme. This research reveals the influences of temporal history in the fractional Cauchy reaction-diffusion equations, which is the novelty of this work.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Blow-up solutions to the Cauchy problem of a fractional reaction-diffusion system
    Ezi Wu
    Yanbin Tang
    [J]. Journal of Inequalities and Applications, 2015
  • [32] Blow-up solutions to the Cauchy problem of a fractional reaction-diffusion system
    Wu, Ezi
    Tang, Yanbin
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015,
  • [33] GLOBAL EXISTENCE FOR VECTOR VALUED FRACTIONAL REACTION-DIFFUSION EQUATIONS
    Besteiro, Agustin
    Rial, Diego
    [J]. PUBLICACIONS MATEMATIQUES, 2021, 65 (02) : 653 - 680
  • [34] A reliable numerical method for solving fractional reaction-diffusion equations
    Yadav, Supriya
    Kumar, Devendra
    Nisar, Kottakkaran Sooppy
    [J]. JOURNAL OF KING SAUD UNIVERSITY SCIENCE, 2021, 33 (02)
  • [35] Fractional Reaction-Diffusion Equations for Modelling Complex Biological Patterns
    Akil, Ku Azlina Ku
    Muniandy, Sithi V.
    Lim, Einly
    [J]. MALAYSIAN JOURNAL OF FUNDAMENTAL AND APPLIED SCIENCES, 2012, 8 (03): : 126 - 130
  • [36] Existence of Peregrine type solutions in fractional reaction-diffusion equations
    Besteiro, Agustin
    Rial, Diego
    [J]. ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2019, (09) : 1 - 9
  • [37] Optimal control of fractional reaction-diffusion equations with Poisson jumps
    Durga, N.
    Muthukumar, P.
    [J]. JOURNAL OF ANALYSIS, 2019, 27 (02): : 605 - 621
  • [38] Cauchy problem for fractional diffusion equations
    Eidelman, SD
    Kochubei, AN
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 199 (02) : 211 - 255
  • [39] Asymptotic analysis for reaction-diffusion equations with absorption
    Wanjuan Du
    Zhongping Li
    [J]. Boundary Value Problems, 2012
  • [40] Novel Numerical Investigations of Fuzzy Cauchy Reaction-Diffusion Models via Generalized Fuzzy Fractional Derivative Operators
    Alqudah, Manar A.
    Ashraf, Rehana
    Rashid, Saima
    Singh, Jagdev
    Hammouch, Zakia
    Abdeljawad, Thabet
    [J]. FRACTAL AND FRACTIONAL, 2021, 5 (04)