GLOBAL EXISTENCE FOR VECTOR VALUED FRACTIONAL REACTION-DIFFUSION EQUATIONS

被引:1
|
作者
Besteiro, Agustin [1 ]
Rial, Diego [1 ,2 ]
机构
[1] CONICET UBA, Inst Matemat Luis Santalo, Ciudad Univ,Pabellon 1, RA-1428 Buenos Aires, DF, Argentina
[2] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Matemat, Ciudad Univ,Pabellon 1,C1428EGA, RA-1428 Buenos Aires, DF, Argentina
关键词
fractional diffusion; global existence; Lie-Trotter method; CELLULAR-AUTOMATA; INVARIANT REGIONS; SPLITTING METHODS; SYSTEMS;
D O I
10.5565/PUBLMAT6522108
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study the initial value problem for infinite dimensional fractional non-autonomous reaction-diffusion equations. Applying general time-splitting methods, we prove the existence of solutions globally defined in time using convex sets as invariant regions. We expose examples where biological and pattern formation systems, under suitable assumptions, achieve global existence. We also analyze the asymptotic behavior of solutions.
引用
收藏
页码:653 / 680
页数:28
相关论文
共 50 条
  • [1] GLOBAL EXISTENCE FOR LAPLACE REACTION-DIFFUSION EQUATIONS
    Favini, Angelo
    Yagi, Atsushi
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2020, 13 (05): : 1473 - 1493
  • [2] A necessary and sufficient conditions for the global existence of solutions to fractional reaction-diffusion equations on RN
    Chung, Soon-Yeong
    Hwang, Jaeho
    [J]. FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2024, 27 (05) : 2606 - 2619
  • [3] Existence of Peregrine type solutions in fractional reaction-diffusion equations
    Besteiro, Agustin
    Rial, Diego
    [J]. ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2019, (09) : 1 - 9
  • [4] On Global Existence of the Fractional Reaction-Diffusion System?s Solution
    Batiha, Iqbal M.
    Barrouk, Nabila
    Ouannas, Adel
    Alshanti, Waseem G.
    [J]. INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2023, 21
  • [5] Local and global existence of mild solutions for a class of nonlinear fractional reaction-diffusion equations with delay
    Zhu, Bo
    Liu, Lishan
    Wu, Yonghong
    [J]. APPLIED MATHEMATICS LETTERS, 2016, 61 : 73 - 79
  • [6] Fractional reaction-diffusion equations
    Saxena, R. K.
    Mathai, A. M.
    Haubold, H. J.
    [J]. ASTROPHYSICS AND SPACE SCIENCE, 2006, 305 (03) : 289 - 296
  • [7] Existence and uniqueness of global mild solutions for a class of nonlinear fractional reaction-diffusion equations with delay
    Zhu, Bo
    Liu, Lishan
    Wu, Yonghong
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2019, 78 (06) : 1811 - 1818
  • [8] Fractional Reaction-Diffusion Equations
    R. K. Saxena
    A. M. Mathai
    H. J. Haubold
    [J]. Astrophysics and Space Science, 2006, 305 : 289 - 296
  • [9] Global existence and asymptotic behavior for a time fractional reaction-diffusion system
    Alsaedi, Ahmed
    Kirane, Mokhtar
    Lassoued, Rafika
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 73 (06) : 951 - 958
  • [10] EXISTENCE OF PULSES IN REACTION-DIFFUSION EQUATIONS
    SCHNEIDER, KR
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1993, 73 (7-8): : T780 - T782