Local and global existence of mild solutions for a class of nonlinear fractional reaction-diffusion equations with delay

被引:97
|
作者
Zhu, Bo [1 ,2 ]
Liu, Lishan [1 ,3 ]
Wu, Yonghong [3 ]
机构
[1] Qufu Normal Univ, Sch Math Sci, Qufu 273165, Shandong, Peoples R China
[2] Shandong Univ Finance & Econ, Sch Math & Quantitat Econ, Jinan 250014, Shandong, Peoples R China
[3] Curtin Univ, Dept Math & Stat, Perth, WA 6845, Australia
基金
中国国家自然科学基金;
关键词
Nonlinear fractional reaction-diffusion equation; Local and global solutions; Theory of beta-resolvent family; Mild solution; Fixed point theorems; PARTIAL-DIFFERENTIAL-EQUATION; EVOLUTION-EQUATIONS; BOUNDARY-CONDITIONS; POSITIVE SOLUTIONS;
D O I
10.1016/j.aml.2016.05.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate the local and global existence of mild solutions to a class of nonlinear fractional reaction diffusion equations with delay via the theory of beta-resolvent family and fixed point theorems. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:73 / 79
页数:7
相关论文
共 50 条
  • [1] Existence and uniqueness of global mild solutions for a class of nonlinear fractional reaction-diffusion equations with delay
    Zhu, Bo
    Liu, Lishan
    Wu, Yonghong
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2019, 78 (06) : 1811 - 1818
  • [2] Existence of global and explosive mild solutions of fractional reaction-diffusion system of semilinear SPDEs with fractional noise
    Sankar, S.
    Mohan, Manil T.
    Karthikeyan, S.
    [J]. STOCHASTICS AND DYNAMICS, 2024, 24 (03)
  • [3] GLOBAL EXISTENCE FOR VECTOR VALUED FRACTIONAL REACTION-DIFFUSION EQUATIONS
    Besteiro, Agustin
    Rial, Diego
    [J]. PUBLICACIONS MATEMATIQUES, 2021, 65 (02) : 653 - 680
  • [4] A necessary and sufficient conditions for the global existence of solutions to fractional reaction-diffusion equations on RN
    Chung, Soon-Yeong
    Hwang, Jaeho
    [J]. FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2024, 27 (05) : 2606 - 2619
  • [5] Existence of Peregrine type solutions in fractional reaction-diffusion equations
    Besteiro, Agustin
    Rial, Diego
    [J]. ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2019, (09) : 1 - 9
  • [6] Particular Solutions of a Class of Nonlinear Reaction-Diffusion Equations
    Chu, Hongxue
    Jiang, Tongsong
    [J]. INFORMATION COMPUTING AND APPLICATIONS, ICICA 2013, PT I, 2013, 391 : 584 - 592
  • [7] Existence of Mild Solutions to Delay Diffusion Equations with Hilfer Fractional Derivative
    Jin, Yuhang
    He, Wenchang
    Wang, Luyao
    Mu, Jia
    [J]. FRACTAL AND FRACTIONAL, 2024, 8 (07)
  • [8] ASYMPTOTIC SYMMETRY FOR A CLASS OF NONLINEAR FRACTIONAL REACTION-DIFFUSION EQUATIONS
    Jarohs, Sven
    Weth, Tobias
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2014, 34 (06): : 2581 - 2615
  • [9] Global Existence of Classical Solutions for a Class of Reaction-Diffusion Systems
    El-Haj Laamri
    [J]. Acta Applicandae Mathematicae, 2011, 115 : 153 - 165
  • [10] Global Existence of Classical Solutions for a Class of Reaction-Diffusion Systems
    Laamri, El-Haj
    [J]. ACTA APPLICANDAE MATHEMATICAE, 2011, 115 (02) : 153 - 165