A novel analysis of the fractional Cauchy reaction-diffusion equations

被引:0
|
作者
Sarwe, Deepak Umarao [1 ]
Raj, A. Stephan Antony [2 ]
Kumar, Pushpendra [3 ,4 ]
Salahshour, Soheil [3 ,5 ,6 ]
机构
[1] Univ Mumbai, Dept Math, Mumbai 400098, Maharastra, India
[2] SNS Coll Engn, Dept Math, Coimbatore, India
[3] Istanbul Okan Univ, Fac Engn & Nat Sci, Istanbul, Turkiye
[4] Near East Univ TRNC, Math Res Ctr, Dept Math, Mersin 10, Nicosia, Turkiye
[5] Bahcesehir Univ, Fac Engn & Nat Sci, Istanbul, Turkiye
[6] Lebanese Amer Univ, Dept Comp Sci & Math, Beirut, Lebanon
关键词
Cauchy reaction-diffusion equations; Caputo fractional derivative; Fractional natural decomposition method;
D O I
10.1007/s12648-024-03411-0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This article considers the Cauchy reaction-diffusion equations and derives the numerical solutions using the fractional natural decomposition method (FNDM). The projected solution approach works without conversion or perturbation. The examples confirm the method's accuracy and reliability, allowing for fractional order studies in real-world problems. Plots and tables validate the accuracy of the proposed scheme. This research reveals the influences of temporal history in the fractional Cauchy reaction-diffusion equations, which is the novelty of this work.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] ON FRACTIONAL REACTION-DIFFUSION EQUATIONS INVOLVING UNBOUNDED DELAY
    Tuan, Nguyen Huy
    Hai, Nguyen Minh
    Thach, Tran Ngoc
    [J]. JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2022, 23 (08) : 1709 - 1724
  • [22] On the solutions of time-fractional reaction-diffusion equations
    Rida, S. Z.
    El-Sayed, A. M. A.
    Arafa, A. A. M.
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2010, 15 (12) : 3847 - 3854
  • [23] A hybrid approach for piecewise fractional reaction-diffusion equations
    Heydari, M. H.
    Zhagharian, Sh.
    [J]. RESULTS IN PHYSICS, 2023, 51
  • [24] Multiplicity result for a stationary fractional reaction-diffusion equations
    Torres Ledesma, Cesar E.
    [J]. TBILISI MATHEMATICAL JOURNAL, 2016, 9 (02): : 115 - 127
  • [25] Numerical treatment of fractional order Cauchy reaction diffusion equations
    Ali, Sajjad
    Bushnaq, Samia
    Shah, Kamal
    Arif, Muhammad
    [J]. CHAOS SOLITONS & FRACTALS, 2017, 103 : 578 - 587
  • [26] Fractional reaction-diffusion
    Henry, BI
    Wearne, SL
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2000, 276 (3-4) : 448 - 455
  • [27] The homotopy analysis method for Cauchy reaction-diffusion problems
    Bataineh, A. Sami
    Noorani, M. S. M.
    Hashim, I.
    [J]. PHYSICS LETTERS A, 2008, 372 (05) : 613 - 618
  • [28] ASYMPTOTIC SYMMETRY FOR A CLASS OF NONLINEAR FRACTIONAL REACTION-DIFFUSION EQUATIONS
    Jarohs, Sven
    Weth, Tobias
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2014, 34 (06) : 2581 - 2615
  • [29] Splitting spectral element method for fractional reaction-diffusion equations
    Li, Qi
    Song, Fangying
    [J]. JOURNAL OF ALGORITHMS & COMPUTATIONAL TECHNOLOGY, 2020, 14
  • [30] Optimal control of fractional reaction-diffusion equations with Poisson jumps
    N. Durga
    P. Muthukumar
    [J]. The Journal of Analysis, 2019, 27 : 605 - 621