AI-based differential diagnosis of dementia etiologies on multimodal data

被引:9
|
作者
Xue, Chonghua [1 ,2 ]
Kowshik, Sahana S. [1 ,3 ]
Lteif, Diala [1 ,4 ]
Puducheri, Shreyas [1 ]
Jasodanand, Varuna H. [1 ]
Zhou, Olivia T. [1 ]
Walia, Anika S. [1 ]
Guney, Osman B. [1 ,2 ]
Zhang, J. Diana [1 ,5 ]
Pham, Serena T. [6 ]
Kaliaev, Artem [6 ]
Andreu-Arasa, V. Carlota [6 ]
Dwyer, Brigid C. [7 ]
Farris, Chad W. [6 ]
Hao, Honglin [8 ]
Kedar, Sachin [9 ,10 ]
Mian, Asim Z. [6 ]
Murman, Daniel L. [11 ]
O'Shea, Sarah A. [12 ]
Paul, Aaron B. [13 ]
Rohatgi, Saurabh [13 ]
Saint-Hilaire, Marie-Helene [7 ]
Sartor, Emmett A. [7 ]
Setty, Bindu N. [6 ]
Small, Juan E. [14 ]
Swaminathan, Arun [15 ]
Taraschenko, Olga [11 ]
Yuan, Jing [8 ]
Zhou, Yan [8 ]
Zhu, Shuhan [16 ]
Karjadi, Cody [17 ]
Ang, Ting Fang Alvin [16 ,17 ]
Bargal, Sarah A. [19 ]
Plummer, Bryan A. [4 ]
Poston, Kathleen L. [20 ]
Ahangaran, Meysam [1 ]
Au, Rhoda [1 ,7 ,17 ,18 ,21 ,22 ]
Kolachalama, Vijaya B. [1 ,3 ,4 ,21 ]
机构
[1] Boston Univ, Dept Med, Chobanian & Avedisian Sch Med, Boston, MA 02215 USA
[2] Boston Univ, Dept Elect & Comp Engn, Boston, MA USA
[3] Boston Univ, Fac Comp & Data Sci, Boston, MA 02215 USA
[4] Boston Univ, Dept Comp Sci, Boston, MA 02215 USA
[5] Univ New South Wales, Sch Chem, Sydney, Australia
[6] Boston Univ, Chobanian & Avedisian Sch Med, Dept Radiol, Boston, MA USA
[7] Boston Univ, Chobanian & Avedisian Sch Med, Dept Neurol, Boston, MA USA
[8] Chinese Acad Med Sci, Peking Union Med Coll Hosp, Dept Neurol, Beijing, Peoples R China
[9] Emory Univ, Sch Med, Dept Neurol, Atlanta, GA USA
[10] Emory Univ, Sch Med, Dept Ophthalmol, Atlanta, GA USA
[11] Univ Nebraska Med Ctr, Dept Neurol Sci, Omaha, NE USA
[12] Columbia Univ, Irving Med Ctr, Dept Neurol, New York, NY USA
[13] Massachusetts Gen Hosp, Dept Radiol, Boston, MA USA
[14] Lahey Hosp & Med Ctr, Dept Radiol, Burlington, MA USA
[15] SSM Hlth, Dept Neurol, Madison, WI USA
[16] Brigham & Womens Hosp, Dept Neurol, Boston, MA USA
[17] Boston Univ, Chobanian & Avedisian Sch Med, Framingham Heart Study, Boston, MA USA
[18] Boston Univ, Chobanian & Avedisian Sch Med, Dept Anat & Neurobiol, Boston, MA USA
[19] Georgetown Univ, Dept Comp Sci, Washington, DC USA
[20] Stanford Univ, Dept Neurol, Palo Alto, CA USA
[21] Boston Univ, Alzheimers Dis Res Ctr, Boston, MA 02215 USA
[22] Boston Univ, Sch Publ Hlth, Dept Epidemiol, Boston, MA USA
基金
美国国家卫生研究院; 加拿大健康研究院;
关键词
CENTER NACC DATABASE; ALZHEIMER-DISEASE; DEGENERATION; PROGRESSION;
D O I
10.1038/s41591-024-03118-z
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Differential diagnosis of dementia remains a challenge in neurology due to symptom overlap across etiologies, yet it is crucial for formulating early, personalized management strategies. Here, we present an artificial intelligence (AI) model that harnesses a broad array of data, including demographics, individual and family medical history, medication use, neuropsychological assessments, functional evaluations and multimodal neuroimaging, to identify the etiologies contributing to dementia in individuals. The study, drawing on 51,269 participants across 9 independent, geographically diverse datasets, facilitated the identification of 10 distinct dementia etiologies. It aligns diagnoses with similar management strategies, ensuring robust predictions even with incomplete data. Our model achieved a microaveraged area under the receiver operating characteristic curve (AUROC) of 0.94 in classifying individuals with normal cognition, mild cognitive impairment and dementia. Also, the microaveraged AUROC was 0.96 in differentiating the dementia etiologies. Our model demonstrated proficiency in addressing mixed dementia cases, with a mean AUROC of 0.78 for two co-occurring pathologies. In a randomly selected subset of 100 cases, the AUROC of neurologist assessments augmented by our AI model exceeded neurologist-only evaluations by 26.25%. Furthermore, our model predictions aligned with biomarker evidence and its associations with different proteinopathies were substantiated through postmortem findings. Our framework has the potential to be integrated as a screening tool for dementia in clinical settings and drug trials. Further prospective studies are needed to confirm its ability to improve patient care. Drawing on 51,269 participants across 9 independent, geographically diverse datasets, an AI model identifies the etiologies contributing to dementia in individuals, harnessing a broad array of data, including demographics, medical history, medication use, neuropsychological assessments, functional evaluations, and multimodal neuroimaging.
引用
收藏
页码:2977 / 2989
页数:34
相关论文
共 50 条
  • [41] A Review of Recent Advances in Brain Tumor Diagnosis Based on AI-Based Classification
    Kaifi, Reham
    DIAGNOSTICS, 2023, 13 (18)
  • [42] The SINFONIA project repository for AI-based algorithms and health data
    Fernandez-Fabeiro, Jorge
    Carballido, Alvaro
    Fernandez-Fernandez, Angel M.
    Moldes, Manoel R.
    Villar, David
    Mourino, Jose C.
    FRONTIERS IN PUBLIC HEALTH, 2024, 12
  • [43] AI-based big data analytics model for medical applications
    Lokesh S.
    Chakraborty S.
    Pulugu R.
    Mittal S.
    Pulugu D.
    Muruganantham R.
    Measurement: Sensors, 2022, 24
  • [44] Commentary: AI-based preeclampsia detection and prediction with electrocardiogram data
    Carbillon, Lionel
    FRONTIERS IN CARDIOVASCULAR MEDICINE, 2024, 11
  • [45] AI development and application of AI-based solutions in the area of information and data management in Poland
    Chmielarz, Grzegorz
    Pabian, Arnold
    2020 16TH INTERNATIONAL CONFERENCE ON NETWORK AND SERVICE MANAGEMENT (CNSM), 2020,
  • [46] Deformable MRI Sequence Registration for AI-Based Prostate Cancer Diagnosis
    Hering, Alessa
    de Boer, Sarah
    Saha, Anindo
    Twilt, Jasper J.
    Heinrich, Mattias P.
    Yakar, Derya
    de Rooij, Maarten
    Huisman, Henkjan
    Bosma, Joeran S.
    BIOMEDICAL IMAGE REGISTRATION, WBIR 2024, 2025, 15249 : 148 - 162
  • [47] Impact of Conventional and AI-based Image Coding on AI-based Face Recognition Performance
    Bousnina, Naima
    Ascenso, Joao
    Correia, Paulo Lobato
    Pereira, Fernando
    2022 10TH EUROPEAN WORKSHOP ON VISUAL INFORMATION PROCESSING (EUVIP), 2022,
  • [48] AI-based diagnosis algorithm of pulmonary arterial hypertension using echocardiography
    Alyavi, Anis
    Alyavi, Bakhromkhon
    Abdullaev, Akbar
    Uzokov, Jamol
    Muminov, Shovkat
    Iskhakov, Sherzod
    Ashirbaev, Sherzod
    Vikhrov, Igor
    EUROPEAN RESPIRATORY JOURNAL, 2024, 64
  • [49] Special issue on deep learning and big data analytics for medical e-diagnosis/AI-based e-diagnosis
    Fong, Simon
    Fortino, Giancarlo
    Ghista, Dhanjoo
    Piccialli, Francesco
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (22): : 15961 - 15965
  • [50] Special issue on deep learning and big data analytics for medical e-diagnosis/AI-based e-diagnosis
    Simon Fong
    Giancarlo Fortino
    Dhanjoo Ghista
    Francesco Piccialli
    Neural Computing and Applications, 2023, 35 : 15961 - 15965