AI-based differential diagnosis of dementia etiologies on multimodal data

被引:9
|
作者
Xue, Chonghua [1 ,2 ]
Kowshik, Sahana S. [1 ,3 ]
Lteif, Diala [1 ,4 ]
Puducheri, Shreyas [1 ]
Jasodanand, Varuna H. [1 ]
Zhou, Olivia T. [1 ]
Walia, Anika S. [1 ]
Guney, Osman B. [1 ,2 ]
Zhang, J. Diana [1 ,5 ]
Pham, Serena T. [6 ]
Kaliaev, Artem [6 ]
Andreu-Arasa, V. Carlota [6 ]
Dwyer, Brigid C. [7 ]
Farris, Chad W. [6 ]
Hao, Honglin [8 ]
Kedar, Sachin [9 ,10 ]
Mian, Asim Z. [6 ]
Murman, Daniel L. [11 ]
O'Shea, Sarah A. [12 ]
Paul, Aaron B. [13 ]
Rohatgi, Saurabh [13 ]
Saint-Hilaire, Marie-Helene [7 ]
Sartor, Emmett A. [7 ]
Setty, Bindu N. [6 ]
Small, Juan E. [14 ]
Swaminathan, Arun [15 ]
Taraschenko, Olga [11 ]
Yuan, Jing [8 ]
Zhou, Yan [8 ]
Zhu, Shuhan [16 ]
Karjadi, Cody [17 ]
Ang, Ting Fang Alvin [16 ,17 ]
Bargal, Sarah A. [19 ]
Plummer, Bryan A. [4 ]
Poston, Kathleen L. [20 ]
Ahangaran, Meysam [1 ]
Au, Rhoda [1 ,7 ,17 ,18 ,21 ,22 ]
Kolachalama, Vijaya B. [1 ,3 ,4 ,21 ]
机构
[1] Boston Univ, Dept Med, Chobanian & Avedisian Sch Med, Boston, MA 02215 USA
[2] Boston Univ, Dept Elect & Comp Engn, Boston, MA USA
[3] Boston Univ, Fac Comp & Data Sci, Boston, MA 02215 USA
[4] Boston Univ, Dept Comp Sci, Boston, MA 02215 USA
[5] Univ New South Wales, Sch Chem, Sydney, Australia
[6] Boston Univ, Chobanian & Avedisian Sch Med, Dept Radiol, Boston, MA USA
[7] Boston Univ, Chobanian & Avedisian Sch Med, Dept Neurol, Boston, MA USA
[8] Chinese Acad Med Sci, Peking Union Med Coll Hosp, Dept Neurol, Beijing, Peoples R China
[9] Emory Univ, Sch Med, Dept Neurol, Atlanta, GA USA
[10] Emory Univ, Sch Med, Dept Ophthalmol, Atlanta, GA USA
[11] Univ Nebraska Med Ctr, Dept Neurol Sci, Omaha, NE USA
[12] Columbia Univ, Irving Med Ctr, Dept Neurol, New York, NY USA
[13] Massachusetts Gen Hosp, Dept Radiol, Boston, MA USA
[14] Lahey Hosp & Med Ctr, Dept Radiol, Burlington, MA USA
[15] SSM Hlth, Dept Neurol, Madison, WI USA
[16] Brigham & Womens Hosp, Dept Neurol, Boston, MA USA
[17] Boston Univ, Chobanian & Avedisian Sch Med, Framingham Heart Study, Boston, MA USA
[18] Boston Univ, Chobanian & Avedisian Sch Med, Dept Anat & Neurobiol, Boston, MA USA
[19] Georgetown Univ, Dept Comp Sci, Washington, DC USA
[20] Stanford Univ, Dept Neurol, Palo Alto, CA USA
[21] Boston Univ, Alzheimers Dis Res Ctr, Boston, MA 02215 USA
[22] Boston Univ, Sch Publ Hlth, Dept Epidemiol, Boston, MA USA
基金
美国国家卫生研究院; 加拿大健康研究院;
关键词
CENTER NACC DATABASE; ALZHEIMER-DISEASE; DEGENERATION; PROGRESSION;
D O I
10.1038/s41591-024-03118-z
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Differential diagnosis of dementia remains a challenge in neurology due to symptom overlap across etiologies, yet it is crucial for formulating early, personalized management strategies. Here, we present an artificial intelligence (AI) model that harnesses a broad array of data, including demographics, individual and family medical history, medication use, neuropsychological assessments, functional evaluations and multimodal neuroimaging, to identify the etiologies contributing to dementia in individuals. The study, drawing on 51,269 participants across 9 independent, geographically diverse datasets, facilitated the identification of 10 distinct dementia etiologies. It aligns diagnoses with similar management strategies, ensuring robust predictions even with incomplete data. Our model achieved a microaveraged area under the receiver operating characteristic curve (AUROC) of 0.94 in classifying individuals with normal cognition, mild cognitive impairment and dementia. Also, the microaveraged AUROC was 0.96 in differentiating the dementia etiologies. Our model demonstrated proficiency in addressing mixed dementia cases, with a mean AUROC of 0.78 for two co-occurring pathologies. In a randomly selected subset of 100 cases, the AUROC of neurologist assessments augmented by our AI model exceeded neurologist-only evaluations by 26.25%. Furthermore, our model predictions aligned with biomarker evidence and its associations with different proteinopathies were substantiated through postmortem findings. Our framework has the potential to be integrated as a screening tool for dementia in clinical settings and drug trials. Further prospective studies are needed to confirm its ability to improve patient care. Drawing on 51,269 participants across 9 independent, geographically diverse datasets, an AI model identifies the etiologies contributing to dementia in individuals, harnessing a broad array of data, including demographics, medical history, medication use, neuropsychological assessments, functional evaluations, and multimodal neuroimaging.
引用
收藏
页码:2977 / 2989
页数:34
相关论文
共 50 条
  • [21] Data Science and AI-Based Optimization in Scientific Programming
    Soto, Ricardo
    Gomez-Pulido, Juan A.
    Caro, Stephane
    Lanza-Gutierrez, Jose M.
    SCIENTIFIC PROGRAMMING, 2019, 2019
  • [22] AI-based preeclampsia detection and prediction with electrocardiogram data
    Butler, Liam
    Gunturkun, Fatma
    Chinthala, Lokesh
    Karabayir, Ibrahim
    Tootooni, Mohammad S.
    Bakir-Batu, Berna
    Celik, Turgay
    Akbilgic, Oguz
    Davis, Robert L.
    FRONTIERS IN CARDIOVASCULAR MEDICINE, 2024, 11
  • [23] AI-based tools for the diagnosis and treatment of rare neurological disorders
    Maria J. Molnar
    Viktor Molnar
    Nature Reviews Neurology, 2023, 19 : 455 - 456
  • [24] Situation Awareness in AI-Based Technologies and Multimodal Systems: Architectures, Challenges and Applications
    Chen, Jieli
    Seng, Kah Phooi
    Smith, Jeremy
    Ang, Li-Minn
    IEEE ACCESS, 2024, 12 : 88779 - 88818
  • [25] AI-based tools for the diagnosis and treatment of rare neurological disorders
    Molnar, Maria J.
    Molnar, Viktor
    NATURE REVIEWS NEUROLOGY, 2023, 19 (08) : 455 - 456
  • [26] AI-Based Approaches for the Diagnosis of Mpox: Challenges and Future Prospects
    Asif, Sohaib
    Zhao, Ming
    Li, Yangfan
    Tang, Fengxiao
    Khan, Saif Ur Rehman
    Zhu, Yusen
    ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING, 2024, 31 (06) : 3585 - 3617
  • [27] AI-based MOA fault diagnosis mechanism in wireless networks
    He, Tao
    Zhang, Zhong
    Shen, Pengfei
    Wei, Min
    Zhang, Yu
    WIRELESS NETWORKS, 2024, 30 (05) : 4353 - 4364
  • [28] A dataset of blood slide images for AI-based diagnosis of malaria
    Nakasi, Rose
    Nabende, Joyce Nakatumba
    Tusubira, Jeremy Francis
    Bamundaga, Aloyzius Lubowa
    Andama, Alfred
    DATA IN BRIEF, 2025, 58
  • [29] AI-based diagnosis and phenotype - Genotype correlations in syndromic craniosynostoses
    Hennocq, Quentin
    Paternoster, Giovanna
    Collet, Corinne
    Amiel, Jeanne
    Bongibault, Thomas
    Bouygues, Thomas
    Cormier-Daire, Valerie
    Douillet, Maxime
    Dunaway, David J.
    Jeelani, Nu Owase
    van de Lande, Lara S.
    Lyonnet, Stanislas
    Ong, Juling
    Picard, Arnaud
    Rickart, Alexander J.
    Rio, Marlene
    Schievano, Silvia
    Arnaud, Eric
    Garcelon, Nicolas
    Khonsari, Roman H.
    JOURNAL OF CRANIO-MAXILLOFACIAL SURGERY, 2024, 52 (10) : 1172 - 1187
  • [30] An AI-Based Nonparametric Filter Approach for Gearbox Fault Diagnosis
    Kumar, Vikash
    Mukherjee, Subrata
    Verma, Alok Kumar
    Sarangi, Somnath
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71