AI-based differential diagnosis of dementia etiologies on multimodal data

被引:9
|
作者
Xue, Chonghua [1 ,2 ]
Kowshik, Sahana S. [1 ,3 ]
Lteif, Diala [1 ,4 ]
Puducheri, Shreyas [1 ]
Jasodanand, Varuna H. [1 ]
Zhou, Olivia T. [1 ]
Walia, Anika S. [1 ]
Guney, Osman B. [1 ,2 ]
Zhang, J. Diana [1 ,5 ]
Pham, Serena T. [6 ]
Kaliaev, Artem [6 ]
Andreu-Arasa, V. Carlota [6 ]
Dwyer, Brigid C. [7 ]
Farris, Chad W. [6 ]
Hao, Honglin [8 ]
Kedar, Sachin [9 ,10 ]
Mian, Asim Z. [6 ]
Murman, Daniel L. [11 ]
O'Shea, Sarah A. [12 ]
Paul, Aaron B. [13 ]
Rohatgi, Saurabh [13 ]
Saint-Hilaire, Marie-Helene [7 ]
Sartor, Emmett A. [7 ]
Setty, Bindu N. [6 ]
Small, Juan E. [14 ]
Swaminathan, Arun [15 ]
Taraschenko, Olga [11 ]
Yuan, Jing [8 ]
Zhou, Yan [8 ]
Zhu, Shuhan [16 ]
Karjadi, Cody [17 ]
Ang, Ting Fang Alvin [16 ,17 ]
Bargal, Sarah A. [19 ]
Plummer, Bryan A. [4 ]
Poston, Kathleen L. [20 ]
Ahangaran, Meysam [1 ]
Au, Rhoda [1 ,7 ,17 ,18 ,21 ,22 ]
Kolachalama, Vijaya B. [1 ,3 ,4 ,21 ]
机构
[1] Boston Univ, Dept Med, Chobanian & Avedisian Sch Med, Boston, MA 02215 USA
[2] Boston Univ, Dept Elect & Comp Engn, Boston, MA USA
[3] Boston Univ, Fac Comp & Data Sci, Boston, MA 02215 USA
[4] Boston Univ, Dept Comp Sci, Boston, MA 02215 USA
[5] Univ New South Wales, Sch Chem, Sydney, Australia
[6] Boston Univ, Chobanian & Avedisian Sch Med, Dept Radiol, Boston, MA USA
[7] Boston Univ, Chobanian & Avedisian Sch Med, Dept Neurol, Boston, MA USA
[8] Chinese Acad Med Sci, Peking Union Med Coll Hosp, Dept Neurol, Beijing, Peoples R China
[9] Emory Univ, Sch Med, Dept Neurol, Atlanta, GA USA
[10] Emory Univ, Sch Med, Dept Ophthalmol, Atlanta, GA USA
[11] Univ Nebraska Med Ctr, Dept Neurol Sci, Omaha, NE USA
[12] Columbia Univ, Irving Med Ctr, Dept Neurol, New York, NY USA
[13] Massachusetts Gen Hosp, Dept Radiol, Boston, MA USA
[14] Lahey Hosp & Med Ctr, Dept Radiol, Burlington, MA USA
[15] SSM Hlth, Dept Neurol, Madison, WI USA
[16] Brigham & Womens Hosp, Dept Neurol, Boston, MA USA
[17] Boston Univ, Chobanian & Avedisian Sch Med, Framingham Heart Study, Boston, MA USA
[18] Boston Univ, Chobanian & Avedisian Sch Med, Dept Anat & Neurobiol, Boston, MA USA
[19] Georgetown Univ, Dept Comp Sci, Washington, DC USA
[20] Stanford Univ, Dept Neurol, Palo Alto, CA USA
[21] Boston Univ, Alzheimers Dis Res Ctr, Boston, MA 02215 USA
[22] Boston Univ, Sch Publ Hlth, Dept Epidemiol, Boston, MA USA
基金
美国国家卫生研究院; 加拿大健康研究院;
关键词
CENTER NACC DATABASE; ALZHEIMER-DISEASE; DEGENERATION; PROGRESSION;
D O I
10.1038/s41591-024-03118-z
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Differential diagnosis of dementia remains a challenge in neurology due to symptom overlap across etiologies, yet it is crucial for formulating early, personalized management strategies. Here, we present an artificial intelligence (AI) model that harnesses a broad array of data, including demographics, individual and family medical history, medication use, neuropsychological assessments, functional evaluations and multimodal neuroimaging, to identify the etiologies contributing to dementia in individuals. The study, drawing on 51,269 participants across 9 independent, geographically diverse datasets, facilitated the identification of 10 distinct dementia etiologies. It aligns diagnoses with similar management strategies, ensuring robust predictions even with incomplete data. Our model achieved a microaveraged area under the receiver operating characteristic curve (AUROC) of 0.94 in classifying individuals with normal cognition, mild cognitive impairment and dementia. Also, the microaveraged AUROC was 0.96 in differentiating the dementia etiologies. Our model demonstrated proficiency in addressing mixed dementia cases, with a mean AUROC of 0.78 for two co-occurring pathologies. In a randomly selected subset of 100 cases, the AUROC of neurologist assessments augmented by our AI model exceeded neurologist-only evaluations by 26.25%. Furthermore, our model predictions aligned with biomarker evidence and its associations with different proteinopathies were substantiated through postmortem findings. Our framework has the potential to be integrated as a screening tool for dementia in clinical settings and drug trials. Further prospective studies are needed to confirm its ability to improve patient care. Drawing on 51,269 participants across 9 independent, geographically diverse datasets, an AI model identifies the etiologies contributing to dementia in individuals, harnessing a broad array of data, including demographics, medical history, medication use, neuropsychological assessments, functional evaluations, and multimodal neuroimaging.
引用
收藏
页码:2977 / 2989
页数:34
相关论文
共 50 条
  • [31] PERSONALIZED AI-BASED DIAGNOSIS SYSTEM FOR URINARY PATIENT CARE
    Lee, Chung Lyul
    Na, Hyun Seok
    Song, Ki Hak
    Lim, Jae Sung
    Shin, Ju Hyun
    Park, Jong Mok
    Lee, Ji Yong
    Lee, Jae Geun
    Na, Yong Gil
    Kim, Khae Hwan
    JOURNAL OF UROLOGY, 2024, 211 (05): : E794 - E795
  • [32] Multimodal 3D measurement setup for generating multimodal real-world data sets for AI-based transparent object recognition
    Junger, Christina
    Landmann, Martin
    Speck, Henri
    Heist, Stefan
    Notni, Gunther
    DIMENSIONAL OPTICAL METROLOGY AND INSPECTION FOR PRACTICAL APPLICATIONS XIII, 2024, 13038
  • [33] Encoding LC-MS-Based Untargeted Metabolomics Data into Images toward AI-Based Clinical Diagnosis
    Wang, Hongmiao
    Yin, Yandong
    Zhu, Zheng-Jiang
    ANALYTICAL CHEMISTRY, 2023, 95 (16) : 6533 - 6541
  • [34] Magic Brush: An AI-based Service for Dementia Prevention focused on Intrinsic Motivation
    Yang M.
    Lee K.
    Kim E.
    Song Y.
    Lee S.
    Kang J.
    Han J.
    Song H.
    Kim T.
    Proc. ACM Hum. Comput. Interact., CSCW2
  • [35] A Novel AI-Based System for Detection and Severity Prediction of Dementia Using MRI
    Jain, Varun
    Nankar, Om
    Jerrish, Daryl Jacob
    Gite, Shilpa
    Patil, Shruti
    Kotecha, Ketan
    IEEE ACCESS, 2021, 9 : 154324 - 154346
  • [36] AI-based personalized real-time risk prediction for behavioral management in psychiatric wards using multimodal data
    Kang, Ri-Ra
    Kim, Yong-gyom
    Hong, Minseok
    Ahn, Yong Min
    Lee, Kangyoon
    INTERNATIONAL JOURNAL OF MEDICAL INFORMATICS, 2025, 198
  • [37] On the role of Data Quality in AI-based Prognostics and Health Management
    Cattaneo, L.
    Polenghi, A.
    Macchi, M.
    Pesenti, V
    IFAC PAPERSONLINE, 2022, 55 (19): : 61 - 66
  • [38] How data science and AI-based technologies impact genomics
    Lin, Jing
    Ngiam, Kee Yuan
    SINGAPORE MEDICAL JOURNAL, 2023, 64 (01) : 59 - 66
  • [39] Data Acquisition System for AI-based Odor Classification at the Edge
    Emmenegger, Silvio
    Kummer, Raphael
    Gisler, Thomas
    Zumbuhl, Christoph
    Wassner, Jurgen
    Taghipour, Armin
    2024 IEEE INTERNATIONAL SYMPOSIUM ON OLFACTION AND ELECTRONIC NOSE, ISOEN, 2024,
  • [40] AI-based Cyber Event OSINT via Twitter Data
    Dale, Dakota
    McClanahan, Kylie
    Li, Qinghua
    2023 INTERNATIONAL CONFERENCE ON COMPUTING, NETWORKING AND COMMUNICATIONS, ICNC, 2023, : 436 - 442