AI-based differential diagnosis of dementia etiologies on multimodal data

被引:9
|
作者
Xue, Chonghua [1 ,2 ]
Kowshik, Sahana S. [1 ,3 ]
Lteif, Diala [1 ,4 ]
Puducheri, Shreyas [1 ]
Jasodanand, Varuna H. [1 ]
Zhou, Olivia T. [1 ]
Walia, Anika S. [1 ]
Guney, Osman B. [1 ,2 ]
Zhang, J. Diana [1 ,5 ]
Pham, Serena T. [6 ]
Kaliaev, Artem [6 ]
Andreu-Arasa, V. Carlota [6 ]
Dwyer, Brigid C. [7 ]
Farris, Chad W. [6 ]
Hao, Honglin [8 ]
Kedar, Sachin [9 ,10 ]
Mian, Asim Z. [6 ]
Murman, Daniel L. [11 ]
O'Shea, Sarah A. [12 ]
Paul, Aaron B. [13 ]
Rohatgi, Saurabh [13 ]
Saint-Hilaire, Marie-Helene [7 ]
Sartor, Emmett A. [7 ]
Setty, Bindu N. [6 ]
Small, Juan E. [14 ]
Swaminathan, Arun [15 ]
Taraschenko, Olga [11 ]
Yuan, Jing [8 ]
Zhou, Yan [8 ]
Zhu, Shuhan [16 ]
Karjadi, Cody [17 ]
Ang, Ting Fang Alvin [16 ,17 ]
Bargal, Sarah A. [19 ]
Plummer, Bryan A. [4 ]
Poston, Kathleen L. [20 ]
Ahangaran, Meysam [1 ]
Au, Rhoda [1 ,7 ,17 ,18 ,21 ,22 ]
Kolachalama, Vijaya B. [1 ,3 ,4 ,21 ]
机构
[1] Boston Univ, Dept Med, Chobanian & Avedisian Sch Med, Boston, MA 02215 USA
[2] Boston Univ, Dept Elect & Comp Engn, Boston, MA USA
[3] Boston Univ, Fac Comp & Data Sci, Boston, MA 02215 USA
[4] Boston Univ, Dept Comp Sci, Boston, MA 02215 USA
[5] Univ New South Wales, Sch Chem, Sydney, Australia
[6] Boston Univ, Chobanian & Avedisian Sch Med, Dept Radiol, Boston, MA USA
[7] Boston Univ, Chobanian & Avedisian Sch Med, Dept Neurol, Boston, MA USA
[8] Chinese Acad Med Sci, Peking Union Med Coll Hosp, Dept Neurol, Beijing, Peoples R China
[9] Emory Univ, Sch Med, Dept Neurol, Atlanta, GA USA
[10] Emory Univ, Sch Med, Dept Ophthalmol, Atlanta, GA USA
[11] Univ Nebraska Med Ctr, Dept Neurol Sci, Omaha, NE USA
[12] Columbia Univ, Irving Med Ctr, Dept Neurol, New York, NY USA
[13] Massachusetts Gen Hosp, Dept Radiol, Boston, MA USA
[14] Lahey Hosp & Med Ctr, Dept Radiol, Burlington, MA USA
[15] SSM Hlth, Dept Neurol, Madison, WI USA
[16] Brigham & Womens Hosp, Dept Neurol, Boston, MA USA
[17] Boston Univ, Chobanian & Avedisian Sch Med, Framingham Heart Study, Boston, MA USA
[18] Boston Univ, Chobanian & Avedisian Sch Med, Dept Anat & Neurobiol, Boston, MA USA
[19] Georgetown Univ, Dept Comp Sci, Washington, DC USA
[20] Stanford Univ, Dept Neurol, Palo Alto, CA USA
[21] Boston Univ, Alzheimers Dis Res Ctr, Boston, MA 02215 USA
[22] Boston Univ, Sch Publ Hlth, Dept Epidemiol, Boston, MA USA
基金
美国国家卫生研究院; 加拿大健康研究院;
关键词
CENTER NACC DATABASE; ALZHEIMER-DISEASE; DEGENERATION; PROGRESSION;
D O I
10.1038/s41591-024-03118-z
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Differential diagnosis of dementia remains a challenge in neurology due to symptom overlap across etiologies, yet it is crucial for formulating early, personalized management strategies. Here, we present an artificial intelligence (AI) model that harnesses a broad array of data, including demographics, individual and family medical history, medication use, neuropsychological assessments, functional evaluations and multimodal neuroimaging, to identify the etiologies contributing to dementia in individuals. The study, drawing on 51,269 participants across 9 independent, geographically diverse datasets, facilitated the identification of 10 distinct dementia etiologies. It aligns diagnoses with similar management strategies, ensuring robust predictions even with incomplete data. Our model achieved a microaveraged area under the receiver operating characteristic curve (AUROC) of 0.94 in classifying individuals with normal cognition, mild cognitive impairment and dementia. Also, the microaveraged AUROC was 0.96 in differentiating the dementia etiologies. Our model demonstrated proficiency in addressing mixed dementia cases, with a mean AUROC of 0.78 for two co-occurring pathologies. In a randomly selected subset of 100 cases, the AUROC of neurologist assessments augmented by our AI model exceeded neurologist-only evaluations by 26.25%. Furthermore, our model predictions aligned with biomarker evidence and its associations with different proteinopathies were substantiated through postmortem findings. Our framework has the potential to be integrated as a screening tool for dementia in clinical settings and drug trials. Further prospective studies are needed to confirm its ability to improve patient care. Drawing on 51,269 participants across 9 independent, geographically diverse datasets, an AI model identifies the etiologies contributing to dementia in individuals, harnessing a broad array of data, including demographics, medical history, medication use, neuropsychological assessments, functional evaluations, and multimodal neuroimaging.
引用
收藏
页码:2977 / 2989
页数:34
相关论文
共 50 条
  • [1] Explainable AI-based Alzheimer's prediction and management using multimodal data
    Jahan, Sobhana
    Abu Taher, Kazi
    Kaiser, M. Shamim
    Mahmud, Mufti
    Rahman, Md. Sazzadur
    Hosen, A. S. M. Sanwar
    Ra, In-Ho
    PLOS ONE, 2023, 18 (11):
  • [2] AI-based Database Performance Diagnosis
    Jin L.-Y.
    Li G.-L.
    Ruan Jian Xue Bao/Journal of Software, 2021, 32 (03): : 845 - 858
  • [3] Synthetic Data Generation System for AI-Based Diabetic Foot Diagnosis
    Hyun J.
    Lee Y.
    Son H.M.
    Lee S.H.
    Pham V.
    Park J.U.
    Chung T.-M.
    SN Computer Science, 2021, 2 (5)
  • [4] AI-based assessments of speech and language impairments in dementia
    Parsapoor, Mahboobeh
    ALZHEIMERS & DEMENTIA, 2023, 19 (10) : 4675 - 4687
  • [5] AI-based screening of natural compounds for dementia therapeutics
    Murugan, Raghul
    NATURAL PRODUCT RESEARCH, 2024,
  • [6] AI-Based Predictive Modelling of the Onset and Progression of Dementia
    Hanke, Sten
    Mangialasche, Francesca
    Bodenler, Markus
    Neumayer, Bernhard
    Ngandu, Tiia
    Mecocci, Patrizia
    Untersteiner, Helena
    Stogmann, Elisabeth
    SMART CITIES, 2022, 5 (02): : 700 - 714
  • [7] AI-based data analysis for healthcare
    Park, Ji Su
    Xiao, Yang
    Chao, Han-Chieh
    Park, Jong Hyuk
    CONNECTION SCIENCE, 2023, 35 (01)
  • [8] AI-based Medical Image Diagnosis Support
    Journal of the Institute of Electrical Engineers of Japan, 2023, 143 (04): : 208 - 211
  • [9] Multimodal AI-Based Summarization and Storytelling for Soccer on Social Media
    Sarkhoosh, Mehdi Houshmand
    Gautam, Sushant
    Midoglu, Cise
    Sabet, Saeed Shafiee
    Halvorsen, Pal
    PROCEEDINGS OF THE 2024 15TH ACM MULTIMEDIA SYSTEMS CONFERENCE 2024, MMSYS 2024, 2024, : 485 - 491
  • [10] AI-Based Multimodal Anomaly Detection for Industrial Machine Operations
    Zhang, Qiaoyun
    Chang, Hsiang-Chuan
    Ho, Chia-Ling
    Keh, Huan-Chao
    Roy, Diptendu Sinha
    JOURNAL OF INTERNET TECHNOLOGY, 2025, 26 (02): : 255 - 264