Deep learning image reconstruction for low-kiloelectron volt virtual monoenergetic images in abdominal dual-energy CT: medium strength provides higher lesion conspicuity

被引:1
|
作者
Zhong, Jingyu [1 ]
Hu, Yangfan [1 ]
Xing, Yue [1 ]
Wang, Lingyun [2 ]
Li, Jianying [3 ]
Lu, Wei [4 ]
Shi, Xiaomeng [5 ]
Ding, Defang [1 ]
Ge, Xiang [1 ]
Zhang, Huan [2 ]
Yao, Weiwu [1 ]
机构
[1] Shanghai Jiao Tong Univ, Tongren Hosp, Sch Med, Dept Imaging, Shanghai 200336, Peoples R China
[2] Shanghai Jiao Tong Univ, Ruijin Hosp, Sch Med, Dept Radiol, Shanghai, Peoples R China
[3] GE Healthcare, Computed Tomog Res Ctr, Beijing, Peoples R China
[4] GE Healthcare, Computed Tomog Res Ctr, Shanghai, Peoples R China
[5] Imperial Coll London, Dept Mat, London, England
基金
中国国家自然科学基金;
关键词
Multidetector computed tomography; deep learning; image reconstruction; contrast enhancement; QUALITY;
D O I
10.1177/02841851241262765
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Background The best settings of deep learning image reconstruction (DLIR) algorithm for abdominal low-kiloelectron volt (keV) virtual monoenergetic imaging (VMI) have not been determined. Purpose To determine the optimal settings of the DLIR algorithm for abdominal low-keV VMI. Material and Methods The portal-venous phase computed tomography (CT) scans of 109 participants with 152 lesions were reconstructed into four image series: VMI at 50 keV using adaptive statistical iterative reconstruction (Asir-V) at 50% blending (AV-50); and VMI at 40 keV using AV-50 and DLIR at medium (DLIR-M) and high strength (DLIR-H). The signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) of nine anatomical sites were calculated. Noise power spectrum (NPS) using homogenous region of liver, and edge rise slope (ERS) at five edges were measured. Five radiologists rated image quality and diagnostic acceptability, and evaluated the lesion conspicuity. Results The SNR and CNR values, and noise and noise peak in NPS measurements, were significantly lower in DLIR images than AV-50 images in all anatomical sites (all P < 0.001). The ERS values were significantly higher in 40-keV images than 50-keV images at all edges (all P < 0.001). The differences of the peak and average spatial frequency among the four reconstruction algorithms were significant but relatively small. The 40-keV images were rated higher with DLIR-M than DLIR-H for diagnostic acceptance (P < 0.001) and lesion conspicuity (P = 0.010). Conclusion DLIR provides lower noise, higher sharpness, and more natural texture to allow 40 keV to be a new standard for routine VMI reconstruction for the abdomen and DLIR-M gains higher diagnostic acceptance and lesion conspicuity rating than DLIR-H.
引用
收藏
页码:1133 / 1146
页数:14
相关论文
共 50 条
  • [1] Improving lesion conspicuity in abdominal dual-energy CT with deep learning image reconstruction: a prospective study with five readers
    Jingyu Zhong
    Lingyun Wang
    Hailin Shen
    Jianying Li
    Wei Lu
    Xiaomeng Shi
    Yue Xing
    Yangfan Hu
    Xiang Ge
    Defang Ding
    Fuhua Yan
    Lianjun Du
    Weiwu Yao
    Huan Zhang
    European Radiology, 2023, 33 : 5331 - 5343
  • [2] Improving lesion conspicuity in abdominal dual-energy CT with deep learning image reconstruction: a prospective study with five readers
    Zhong, Jingyu
    Wang, Lingyun
    Shen, Hailin
    Li, Jianying
    Lu, Wei
    Shi, Xiaomeng
    Xing, Yue
    Hu, Yangfan
    Ge, Xiang
    Ding, Defang
    Yan, Fuhua
    Du, Lianjun
    Yao, Weiwu
    Zhang, Huan
    EUROPEAN RADIOLOGY, 2023, 33 (08) : 5331 - 5343
  • [3] Quantitative and qualitative assessments of deep learning image reconstruction in low-keV virtual monoenergetic dual-energy CT
    Jack Junchi Xu
    Lars Lönn
    Esben Budtz-Jørgensen
    Kristoffer L. Hansen
    Peter S. Ulriksen
    European Radiology, 2022, 32 : 7098 - 7107
  • [4] Quantitative and qualitative assessments of deep learning image reconstruction in low-keV virtual monoenergetic dual-energy CT
    Xu, Jack Junchi
    Lonn, Lars
    Budtz-Jorgensen, Esben
    Hansen, Kristoffer L.
    Ulriksen, Peter S.
    EUROPEAN RADIOLOGY, 2022, 32 (10) : 7098 - 7107
  • [5] Advanced image-based virtual monoenergetic dual-energy CT angiography of the abdomen: optimization of kiloelectron volt settings to improve image contrast
    Albrecht, Moritz H.
    Scholtz, Jan-Erik
    Huesers, Kristina
    Beeres, Martin
    Bucher, Andreas M.
    Kaup, Moritz
    Martin, Simon S.
    Fischer, Sebastian
    Bodelle, Boris
    Bauer, Ralf W.
    Lehnert, Thomas
    Vogl, Thomas J.
    Wichmann, Julian L.
    EUROPEAN RADIOLOGY, 2016, 26 (06) : 1863 - 1870
  • [6] Optimization of Kiloelectron Volt Settings in Cerebral and Cervical Dual-energy CT Angiography Determined with Virtual Monoenergetic Imaging
    Schneider, David
    Apfaltrer, Paul
    Sudarski, Sonja
    Nance, John W., Jr.
    Haubenreisser, Holger
    Fink, Christian
    Schoenberg, Stefan O.
    Henzler, Thomas
    ACADEMIC RADIOLOGY, 2014, 21 (04) : 431 - 436
  • [7] Advanced image-based virtual monoenergetic dual-energy CT angiography of the abdomen: optimization of kiloelectron volt settings to improve image contrast
    Moritz H. Albrecht
    Jan-Erik Scholtz
    Kristina Hüsers
    Martin Beeres
    Andreas M. Bucher
    Moritz Kaup
    Simon S. Martin
    Sebastian Fischer
    Boris Bodelle
    Ralf W. Bauer
    Thomas Lehnert
    Thomas J. Vogl
    Julian L. Wichmann
    European Radiology, 2016, 26 : 1863 - 1870
  • [8] Low-KeV Virtual Monoenergetic Dual-Energy CT with Deep Learning Reconstruction for Assessing Hepatocellular Carcinoma
    Ota, Takashi
    Nakamoto, Atsushi
    Onishi, Hiromitsu
    Tsuboyama, Takahiro
    Matsumoto, Shohei
    Fukui, Hideyuki
    Kaketaka, Koki
    Honda, Toru
    Kiso, Kengo
    Tatsumi, Mitsuaki
    Tomiyama, Noriyuki
    JOURNAL OF MEDICAL AND BIOLOGICAL ENGINEERING, 2024, 44 (02) : 293 - 306
  • [9] Deep learning–based image reconstruction of 40-keV virtual monoenergetic images of dual-energy CT for the assessment of hypoenhancing hepatic metastasis
    Taehee Lee
    Jeong Min Lee
    Jeong Hee Yoon
    Ijin Joo
    Jae Seok Bae
    Jeongin Yoo
    Jae Hyun Kim
    Chulkyun Ahn
    Jong Hyo Kim
    European Radiology, 2022, 32 : 6407 - 6417
  • [10] Optimal Kiloelectron Volt for Noise-optimized Virtual Monoenergetic Images of Dual-Energy Pediatric Abdominopelvic Computed Tomography: Preliminary Results
    Kim, Taek Min
    Choi, Young Hun
    Cheon, Jung-Eun
    Kim, Woo Sun
    Kim, In-One
    Park, Ji Eun
    Shin, Su-mi
    Pak, Seong Yong
    Krauss, Bernhard
    KOREAN JOURNAL OF RADIOLOGY, 2019, 20 (02) : 283 - 294