Agglomerate Engineering to Boost PEM Water Electrolyzer Performance

被引:2
|
作者
Zhao, Congfan [1 ]
Yuan, Shu [1 ]
Cheng, Xiaojing [1 ]
Shen, Shuiyun [1 ]
Zhan, Ninghua [2 ,3 ]
Wu, Rui [2 ]
Mei, Xiaohan [2 ]
Wang, Qian [2 ]
An, Lu [1 ]
Yan, Xiaohui [1 ]
Zhang, Junliang [1 ,4 ]
机构
[1] Shanghai Jiao Tong Univ, Inst Fuel Cells, Sch Mech Engn, 800 Dongchuan Rd, Shanghai 200240, Peoples R China
[2] Shanghai Jiao Tong Univ, Inst Engn Thermophys, Sch Mech Engn, 800 Dongchuan Rd, Shanghai 200240, Peoples R China
[3] Otto Von Guericke Univ, Chair Thermal Proc Engn, PO 4120, D-39106 Magdeburg, Germany
[4] Shanghai Jiao Tong Univ, MOE Key Lab Power Machinery & Engn, 800 Dongchuan Rd, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
Agglomerate Engineering; Sacrificial Template Method; Oxygen Transport Process; Bubble Management; PEMWE; TRANSPORT;
D O I
10.1002/aenm.202401588
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Densely packed IrOx-ionomer agglomerates play a crucial role in the high mass transport resistance inside the anode catalyst layer (ACL), which in turn greatly affects the electrolysis performance at high current density. Therefore, agglomerate engineering for PEMWE is proposed in this work to enhance the oxygen transport process inside ACLs. Using self-assembling nanotechnology, tightly packed primary aggregates are avoided and introduce the interconnected submicron pores and nanocavities into the catalyst-ionomer agglomerate, confirmed by synchrotron radiation-based nano-CT, TEM, and BET. Such agglomerate engineering results in the enhancement of both dissolved oxygen and oxygen bubble transport inside the ACL confirmed by RDE tests and in-situ bubble visualization. As a result, the mass transport overpotential is significantly reduced from 330 to 30 mV at 5 A cm-2 in PEMWE, optimized Ohmic resistance and catalyst utilization are also observed. Finally, high operating current density is achieved, i.e., 5 A cm-2 @2.04 V with Nafion 115 membrane and 7 A cm-2 @ 2.07 V with Nafion 212 membrane, under a low catalyst loading of 0.72 mgIr cm-2. This study proves the importance and feasibility of agglomerate engineering in further elevating the performance of PEMWE. Agglomerate engineering for ACLs in PEMWE is proposed to enhance the dissolved oxygen diffusion and oxygen bubble evolution & transport. High operating current density is achieved, i.e., 5 A cm-2@2.04 V with Nafion 115 membrane and 7 A cm-2@ 2.07 V with Nafion 212 membrane under the low catalyst loading of 0.72 mgIr cm-2. image
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Effects of agglomerate model parameters on transport characterization and performance of PEM fuel cells
    Li, Shian
    Yuan, Jinliang
    Xie, Gongnan
    Sunden, Bengt
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2018, 43 (17) : 8451 - 8463
  • [42] Performance prediction of experimental PEM electrolyzer using machine learning algorithms
    Ozdemir, Safiye Nur
    Pektezel, Oguzhan
    FUEL, 2024, 378
  • [43] The Performance and Stability of a PEM Electrolyzer Using 3-D Mesh
    Kim, Hong Gun
    Kwac, Lee Ku
    Han, Woong
    2012 INTERNATIONAL CONFERENCE ON POWER AND ENERGY SYSTEMS (ICPES 2012), 2012, 13 : 373 - 379
  • [44] Identification of Equivalent Circuit Parameters for Proton Exchange Membrane (PEM) Electrolyzer Engineering Models
    Mao, Xinke
    Tian, Yizhi
    Yang, Aimei
    Zhang, Gaohang
    IEEE ACCESS, 2024, 12 : 15509 - 15524
  • [45] Hydrogen isotope recovery using a cathode water vapor feed PEM electrolyzer
    Fox, E. B.
    Greenway, S. D.
    Ekechukwu, A. A.
    FUSION SCIENCE AND TECHNOLOGY, 2008, 54 (02) : 483 - 486
  • [46] Modeling of the dynamic behavior of a PEM electrolyzer
    Guilbert, Damien
    Zasadzinski, Michel
    Rafaralahy, Hugues
    Boutat-Baddas, Latifa
    2022 10TH INTERNATIONAL CONFERENCE ON SYSTEMS AND CONTROL (ICSC), 2022, : 78 - 84
  • [47] Using the nonlinearity of a PEM water electrolyzer cell for its dynamic model characterization
    Puranen, Pietari
    Hehemann, Michael
    Kuetemeier, Phillip
    Jarvinen, Lauri
    Ruuskanen, Vesa
    Kosonen, Antti
    Ahola, Jero
    Kauranen, Pertti
    ELECTROCHIMICA ACTA, 2024, 507
  • [48] Electrochemical and Microstructural Analysis of a Modified Gas Diffusion Layer for a PEM Water Electrolyzer
    Cruz, J. C.
    Barbosa, R.
    Escobar, B.
    Zarhri, Z.
    Trejo-Arroyo, D. L.
    Pamplona, B.
    Gomez-Barba, L.
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2020, 15 (06): : 5571 - 5584
  • [49] Performance prediction of PEM fuel cell cathode catalyst layer using agglomerate model
    Moein-Jahromi, M.
    Kermani, M. J.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2012, 37 (23) : 17954 - 17966
  • [50] Modelling and experimental validation of a 46 kW PEM high pressure water electrolyzer
    Espinosa-Lopez, Manuel
    Darras, Christophe
    Poggi, Philippe
    Glises, Raynal
    Baucour, Philippe
    Rakotondrainibe, Andre
    Besse, Serge
    Serre-Combe, Pierre
    RENEWABLE ENERGY, 2018, 119 : 160 - 173