Agglomerate Engineering to Boost PEM Water Electrolyzer Performance

被引:2
|
作者
Zhao, Congfan [1 ]
Yuan, Shu [1 ]
Cheng, Xiaojing [1 ]
Shen, Shuiyun [1 ]
Zhan, Ninghua [2 ,3 ]
Wu, Rui [2 ]
Mei, Xiaohan [2 ]
Wang, Qian [2 ]
An, Lu [1 ]
Yan, Xiaohui [1 ]
Zhang, Junliang [1 ,4 ]
机构
[1] Shanghai Jiao Tong Univ, Inst Fuel Cells, Sch Mech Engn, 800 Dongchuan Rd, Shanghai 200240, Peoples R China
[2] Shanghai Jiao Tong Univ, Inst Engn Thermophys, Sch Mech Engn, 800 Dongchuan Rd, Shanghai 200240, Peoples R China
[3] Otto Von Guericke Univ, Chair Thermal Proc Engn, PO 4120, D-39106 Magdeburg, Germany
[4] Shanghai Jiao Tong Univ, MOE Key Lab Power Machinery & Engn, 800 Dongchuan Rd, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
Agglomerate Engineering; Sacrificial Template Method; Oxygen Transport Process; Bubble Management; PEMWE; TRANSPORT;
D O I
10.1002/aenm.202401588
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Densely packed IrOx-ionomer agglomerates play a crucial role in the high mass transport resistance inside the anode catalyst layer (ACL), which in turn greatly affects the electrolysis performance at high current density. Therefore, agglomerate engineering for PEMWE is proposed in this work to enhance the oxygen transport process inside ACLs. Using self-assembling nanotechnology, tightly packed primary aggregates are avoided and introduce the interconnected submicron pores and nanocavities into the catalyst-ionomer agglomerate, confirmed by synchrotron radiation-based nano-CT, TEM, and BET. Such agglomerate engineering results in the enhancement of both dissolved oxygen and oxygen bubble transport inside the ACL confirmed by RDE tests and in-situ bubble visualization. As a result, the mass transport overpotential is significantly reduced from 330 to 30 mV at 5 A cm-2 in PEMWE, optimized Ohmic resistance and catalyst utilization are also observed. Finally, high operating current density is achieved, i.e., 5 A cm-2 @2.04 V with Nafion 115 membrane and 7 A cm-2 @ 2.07 V with Nafion 212 membrane, under a low catalyst loading of 0.72 mgIr cm-2. This study proves the importance and feasibility of agglomerate engineering in further elevating the performance of PEMWE. Agglomerate engineering for ACLs in PEMWE is proposed to enhance the dissolved oxygen diffusion and oxygen bubble evolution & transport. High operating current density is achieved, i.e., 5 A cm-2@2.04 V with Nafion 115 membrane and 7 A cm-2@ 2.07 V with Nafion 212 membrane under the low catalyst loading of 0.72 mgIr cm-2. image
引用
收藏
页数:11
相关论文
共 50 条
  • [31] A multiscale physical model for the transient analysis of PEM water electrolyzer anodes
    Oliveira, Luiz Fernando L.
    Laref, Slimane
    Mayousse, Eric
    Jallut, Christian
    Franco, Alejandro A.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2012, 14 (29) : 10215 - 10224
  • [32] Innovative Method for Reliable Measurement of PEM Water Electrolyzer Component Resistances
    Utsch, Nikolai
    Berg, Florian
    Scheepers, Fabian
    Holtwerth, Sebastian
    Shviro, Meital
    Lehnert, Werner
    Mechler, Anna K.
    SMALL METHODS, 2025,
  • [33] Effect of Water Transport on the Production of Hydrogen and Sulfuric Acid in a PEM Electrolyzer
    Staser, John A.
    Weidner, John W.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2009, 156 (01) : B16 - B21
  • [34] Persistent Effect Test and Internal Microscopic Monitoring for PEM Water Electrolyzer
    Lee, Chi-Yuan
    Chen, Chia-Hung
    Jung, Guo-Bin
    Zheng, Yu-Xiang
    Liu, Yi-Cheng
    MICROMACHINES, 2021, 12 (05)
  • [35] Nonlinear control of a PEM fuel cell integrated system with water electrolyzer
    Sankar, K.
    Jana, Amiya K.
    CHEMICAL ENGINEERING RESEARCH & DESIGN, 2021, 171 : 150 - 167
  • [36] PEM water electrolyzer model for a power-hardware-in-loop simulator
    Ruuskanen, Vesa
    Koponen, Joonas
    Huoman, Kimmo
    Kosonen, Antti
    Niemela, Markku
    Ahola, Jero
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (16) : 10775 - 10784
  • [37] An improved catalyst-coated membrane structure for PEM water electrolyzer
    Song, Shidong
    Zhang, Huamin
    Liu, Bo
    Zhao, Ping
    Zhang, Yining
    Yi, Baolian
    ELECTROCHEMICAL AND SOLID STATE LETTERS, 2007, 10 (08) : B122 - B125
  • [38] Performance of a PEM electrolyzer using RuIrCoOx electrocatalysts for the oxygen evolution electrode
    Corona-Guinto, J. L.
    Cardeno-Garcia, L.
    Martinez-Casillas, D. C.
    Sandoval-Pineda, J. M.
    Tamayo-Meza, P.
    Silva-Casarin, R.
    Gonzalez-Huerta, R. G.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (28) : 12667 - 12673
  • [39] Influence of Ionomer Content in IrO2/TiO2 Electrodes on PEM Water Electrolyzer Performance
    Bernt, Maximilian
    Gasteiger, Hubert A.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2016, 163 (11) : F3179 - F3189
  • [40] Performance assessment and economic perspectives of integrated PEM fuel cell and PEM electrolyzer for electric power generation
    Escobar-Yonoff, Rony
    Maestre-Cambronel, Daniel
    Charry, Sebastian
    Rincon-Montenegro, Adriana
    Portnoy, Ivan
    HELIYON, 2021, 7 (03)