Agglomerate Engineering to Boost PEM Water Electrolyzer Performance

被引:2
|
作者
Zhao, Congfan [1 ]
Yuan, Shu [1 ]
Cheng, Xiaojing [1 ]
Shen, Shuiyun [1 ]
Zhan, Ninghua [2 ,3 ]
Wu, Rui [2 ]
Mei, Xiaohan [2 ]
Wang, Qian [2 ]
An, Lu [1 ]
Yan, Xiaohui [1 ]
Zhang, Junliang [1 ,4 ]
机构
[1] Shanghai Jiao Tong Univ, Inst Fuel Cells, Sch Mech Engn, 800 Dongchuan Rd, Shanghai 200240, Peoples R China
[2] Shanghai Jiao Tong Univ, Inst Engn Thermophys, Sch Mech Engn, 800 Dongchuan Rd, Shanghai 200240, Peoples R China
[3] Otto Von Guericke Univ, Chair Thermal Proc Engn, PO 4120, D-39106 Magdeburg, Germany
[4] Shanghai Jiao Tong Univ, MOE Key Lab Power Machinery & Engn, 800 Dongchuan Rd, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
Agglomerate Engineering; Sacrificial Template Method; Oxygen Transport Process; Bubble Management; PEMWE; TRANSPORT;
D O I
10.1002/aenm.202401588
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Densely packed IrOx-ionomer agglomerates play a crucial role in the high mass transport resistance inside the anode catalyst layer (ACL), which in turn greatly affects the electrolysis performance at high current density. Therefore, agglomerate engineering for PEMWE is proposed in this work to enhance the oxygen transport process inside ACLs. Using self-assembling nanotechnology, tightly packed primary aggregates are avoided and introduce the interconnected submicron pores and nanocavities into the catalyst-ionomer agglomerate, confirmed by synchrotron radiation-based nano-CT, TEM, and BET. Such agglomerate engineering results in the enhancement of both dissolved oxygen and oxygen bubble transport inside the ACL confirmed by RDE tests and in-situ bubble visualization. As a result, the mass transport overpotential is significantly reduced from 330 to 30 mV at 5 A cm-2 in PEMWE, optimized Ohmic resistance and catalyst utilization are also observed. Finally, high operating current density is achieved, i.e., 5 A cm-2 @2.04 V with Nafion 115 membrane and 7 A cm-2 @ 2.07 V with Nafion 212 membrane, under a low catalyst loading of 0.72 mgIr cm-2. This study proves the importance and feasibility of agglomerate engineering in further elevating the performance of PEMWE. Agglomerate engineering for ACLs in PEMWE is proposed to enhance the dissolved oxygen diffusion and oxygen bubble evolution & transport. High operating current density is achieved, i.e., 5 A cm-2@2.04 V with Nafion 115 membrane and 7 A cm-2@ 2.07 V with Nafion 212 membrane under the low catalyst loading of 0.72 mgIr cm-2. image
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Automized parametrization of PEM and alkaline water electrolyzer polarisation curves
    Jarvinen, Lauri
    Puranen, Pietari
    Kosonen, Antti
    Ruuskanen, Vesa
    Ahola, Jero
    Kauranen, Pertti
    Hehemann, Michael
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (75) : 31985 - 32003
  • [22] Model benchmarking for PEM Water Electrolyzer for energy management purposes
    Makhsoos, Ashkan
    Kandidayeni, Mohsen
    Ziane, Meziane Ait
    Boulon, Loic
    Pollet, Bruno G.
    ENERGY CONVERSION AND MANAGEMENT, 2025, 323
  • [23] Thermal and electrochemical performance assessment of a high temperature PEM electrolyzer
    Toghyani, S.
    Afshari, E.
    Baniasadi, E.
    Atyabi, S. A.
    Naterer, G. F.
    ENERGY, 2018, 152 : 237 - 246
  • [24] Performance assessment and optimization of the PEM water electrolyzer by coupled response surface methodology and finite element modeling
    Ozdemir, Safiye Nur
    Taymaz, Imdat
    San, Fatma Gul Boyaci
    Okumus, Emin
    FUEL, 2024, 365
  • [25] Ti-mesh bipolar plate design and optimization for enhanced PEM electrolyzer performance in water splitting
    Liao, Longfei
    Li, Mingyu
    Yin, Yongli
    Tan, Xing
    Du, Ruixing
    Zhong, Qitong
    Zeng, Feng
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 64 : 981 - 989
  • [26] Preparation and Performance Evaluation of Microporous Transport Layers for Proton Exchange Membrane (PEM) Water Electrolyzer Anodes
    Ernst, Matthias F.
    Meier, Vivian
    Kornherr, Matthias
    Gasteiger, Hubert A.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2024, 171 (07)
  • [27] Electrochemical characterization of a PEM water electrolyzer based on a sulfonated polysulfone membrane
    Siracusano, S.
    Baglio, V.
    Lufrano, F.
    Staiti, P.
    Arico, A. S.
    JOURNAL OF MEMBRANE SCIENCE, 2013, 448 : 209 - 214
  • [28] Bimetallic Electrocatalysts supported on TiO2 for PEM Water Electrolyzer
    Fuentes, Roderick E.
    Rau, Sebastian
    Smolinka, Tom
    Weidner, John W.
    ELECTROCHEMICAL TECHNOLOGIES FOR HYDROGEN PRODUCTION, 2010, 28 (26): : 23 - 35
  • [29] Durability of PEM water electrolyzer against wind power voltage fluctuation
    Honsho, Yusuke
    Nagayama, Mayumi
    Matsuda, Junko
    Ito, Kohei
    Sasaki, Kazunari
    Hayashi, Akari
    JOURNAL OF POWER SOURCES, 2023, 564
  • [30] Efficient multi-metallic anode catalysts in a PEM water electrolyzer
    Kokoh, K. B.
    Mayousse, E.
    Napporn, T. W.
    Servat, K.
    Guillet, N.
    Soyez, E.
    Grosjean, A.
    Rakotondrainibe, A.
    Paul-Joseph, J.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (05) : 1924 - 1931