Enhancing quantum utility: Simulating large-scale quantum spin chains on superconducting quantum computers

被引:3
|
作者
Chowdhury, Talal Ahmed [1 ,2 ]
Yu, Kwangmin [3 ]
Shamim, Mahmud Ashraf [4 ]
Kabir, M. L. [5 ]
Sufian, Raza Sabbir [6 ,7 ]
机构
[1] Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA
[2] Univ Dhaka, Dept Phys, POB 1000, Dhaka, Bangladesh
[3] Brookhaven Natl Lab, Computat Sci Initiat, Upton, NY 11973 USA
[4] Univ Alabama, Dept Phys & Astron, Tuscaloosa, AL 35487 USA
[5] Brookhaven Natl Lab, Collider Accelerator Dept, Upton, NY 11973 USA
[6] Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA
[7] Brookhaven Natl Lab, Phys Dept, Upton, NY 11973 USA
来源
PHYSICAL REVIEW RESEARCH | 2024年 / 6卷 / 03期
关键词
EXPONENTIAL OPERATORS; GROUND-STATE; DIMERIZATION; FORMULA; SYSTEMS;
D O I
10.1103/PhysRevResearch.6.033107
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present the quantum simulation of the frustrated quantum spin- 12 antiferromagnetic Heisenberg spin chain with competing nearest-neighbor (J1) and next-nearest-neighbor (J2) exchange interactions in the real superconducting quantum computer with qubits ranging up to 100. In particular, we implement the Hamiltonian with the next-nearest neighbor exchange interaction in conjunction with the nearest-neighbor interaction on IBM's superconducting quantum computer and carry out the time evolution of the spin chain by employing the first-order Trotterization. Furthermore, our implementation of the second-order Trotterization for the isotropic Heisenberg spin chain, involving only nearest-neighbor exchange interaction, enables precise measurement of the expectation values of staggered magnetization observable across a range of up to 100 qubits. Notably, in both cases, our approach results in a constant circuit depth in each Trotter step, independent of the number of qubits. Our demonstration of the accurate measurement of expectation values for the large-scale quantum system using superconducting quantum computers designates the quantum utility of these devices for investigating various properties of many-body quantum systems. This will be a stepping stone to achieving the quantum advantage over classical ones in simulating quantum systems before the fault tolerance quantum era.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Trends in Low-Temperature Circuit Technology to Control Quantum Bits for Large-Scale Quantum Computers
    Yoshikawa N.
    IEEJ Transactions on Fundamentals and Materials, 2021, 141 (01) : 20 - 21
  • [22] Large-scale quantum effects
    Crane, Leah
    NEW SCIENTIST, 2022, 246 (3435) : 10 - 10
  • [23] Decoherence rates in large scale quantum computers
    Dalton, BJ
    QUANTUM COMMUNICATION, MEASUREMENT AND COMPUTING, 2004, 734 : 405 - 408
  • [24] An Investigation into Quantum Program Mapping on Superconducting Quantum Computers
    Dou X.
    Liu L.
    Chen Y.
    Liu, Lei (lei.liu@zoho.com), 1856, Science Press (58): : 1856 - 1874
  • [25] Simulating Quantum Field Theories on Gate -Based Quantum Computers
    Vinod, Gayathree M.
    Shaji, Anil
    2024 IEEE INTERNATIONAL CONFERENCE ON QUANTUM COMPUTING AND ENGINEERING, QCE, VOL 2, 2024, : 551 - 552
  • [26] Quantum spin chains with quantum group symmetry
    Fannes, M
    Nachtergaele, B
    Werner, RF
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1996, 174 (03) : 477 - 507
  • [27] QUANTUM LOOP MODULES AND QUANTUM SPIN CHAINS
    ALTSCHULER, D
    DAVIES, B
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1994, 9 (22): : 3925 - 3958
  • [28] Large-scale simulations of Floquet physics on near-term quantum computers
    Eckstein, Timo
    Mansuroglu, Refik
    Czarnik, Piotr
    Zhu, Jian-Xin
    Hartmann, Michael J.
    Cincio, Lukasz
    Sornborger, Andrew T.
    Holmes, Zoe
    NPJ QUANTUM INFORMATION, 2024, 10 (01)
  • [29] Quantum Circuits for the Preparation of Spin Eigenfunctions on Quantum Computers
    Carbone, Alessandro
    Galli, Davide Emilio
    Motta, Mario
    Jones, Barbara
    SYMMETRY-BASEL, 2022, 14 (03):
  • [30] Large-scale computing with Quantum ESPRESSO
    Giannozzi, P.
    Cavazzoni, C.
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA C-COLLOQUIA ON PHYSICS, 2009, 32 (02): : 49 - 52