Large-scale simulations of Floquet physics on near-term quantum computers

被引:0
|
作者
Eckstein, Timo [1 ,2 ,3 ]
Mansuroglu, Refik [1 ]
Czarnik, Piotr [4 ,5 ]
Zhu, Jian-Xin [3 ,6 ]
Hartmann, Michael J. [1 ,2 ]
Cincio, Lukasz [3 ]
Sornborger, Andrew T. [7 ]
Holmes, Zoe [3 ,8 ]
机构
[1] Friedrich Alexander Univ Erlangen Nurnberg, Dept Phys, Erlangen, Bavaria, Germany
[2] Max Planck Inst Sci Light, Erlangen, Bavaria, Germany
[3] Los Alamos Natl Lab, Theoret Div, Los Alamos, NM 87545 USA
[4] Jagiellonian Univ, Fac Phys Astron & Appl Comp Sci, Krakow, Poland
[5] Jagiellonian Univ, Mark Kac Ctr Complex Syst Res, Krakow, Poland
[6] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM USA
[7] Los Alamos Natl Lab, Informat Sci, Los Alamos, NM USA
[8] Ecole Polytech Fed Lausanne, Lab Quantum Informat & Computat, Lausanne, Vaud, Switzerland
关键词
ISING-MODEL; STATE;
D O I
10.1038/s41534-024-00866-1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Periodically driven quantum systems exhibit a diverse set of phenomena but are more challenging to simulate than their equilibrium counterparts. Here, we introduce the Quantum High-Frequency Floquet Simulation (QHiFFS) algorithm as a method to simulate fast-driven quantum systems on quantum hardware. Central to QHiFFS is the concept of a kick operator which transforms the system into a basis where the dynamics is governed by a time-independent effective Hamiltonian. This allows prior methods for time-independent simulation to be lifted to simulate Floquet systems. We use the periodically driven biaxial next-nearest neighbor Ising (BNNNI) model, a natural test bed for quantum frustrated magnetism and criticality, as a case study to illustrate our algorithm. We implemented a 20-qubit simulation of the driven two-dimensional BNNNI model on Quantinuum's trapped ion quantum computer. Our error analysis shows that QHiFFS exhibits not only a cubic advantage in driving frequency omega but also a linear advantage in simulation time t compared to Trotterization.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Enabling large-scale and high-precision fluid simulations on near-term quantum computers
    Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei
    230088, China
    不详
    230088, China
    不详
    100074, China
    不详
    100012, China
    不详
    710000, China
    不详
    230026, China
    不详
    230026, China
    不详
    450000, China
    不详
    230026, China
    [J]. Comput. Methods Appl. Mech. Eng., 2024,
  • [2] Quantum simulations of materials on near-term quantum computers
    He Ma
    Marco Govoni
    Giulia Galli
    [J]. npj Computational Materials, 6
  • [3] Quantum simulations of materials on near-term quantum computers
    Ma, He
    Govoni, Marco
    Galli, Giulia
    [J]. NPJ COMPUTATIONAL MATERIALS, 2020, 6 (01)
  • [4] Quantum chemistry as a benchmark for near-term quantum computers
    McCaskey, Alexander J.
    Parks, Zachary P.
    Jakowski, Jacek
    Moore, Shirley V.
    Morris, Titus D.
    Humble, Travis S.
    Pooser, Raphael C.
    [J]. NPJ QUANTUM INFORMATION, 2019, 5 (1)
  • [5] Quantum chemistry as a benchmark for near-term quantum computers
    Alexander J. McCaskey
    Zachary P. Parks
    Jacek Jakowski
    Shirley V. Moore
    Titus D. Morris
    Travis S. Humble
    Raphael C. Pooser
    [J]. npj Quantum Information, 5
  • [6] Readout rebalancing for near-term quantum computers
    Hicks, Rebecca
    Bauer, Christian W.
    Nachman, Benjamin
    [J]. PHYSICAL REVIEW A, 2021, 103 (02)
  • [7] Recycling qubits in near-term quantum computers
    Anikeeva, Galit
    Kim, Isaac H.
    Hayden, Patrick
    [J]. PHYSICAL REVIEW A, 2021, 103 (04)
  • [8] Quantum Natural Language Processing on Near-Term Quantum Computers
    Meichanetzidis, K.
    De Felice, G.
    Toumi, A.
    Coecke, B.
    Gogioso, S.
    Chiappori, N.
    [J]. ELECTRONIC PROCEEDINGS IN THEORETICAL COMPUTER SCIENCE, 2021, (340): : 213 - 229
  • [9] Training quantum embedding kernels on near-term quantum computers
    Hubregtsen, Thomas
    Wierichs, David
    Gil-Fuster, Elies
    Derks, Peter-Jan H. S.
    Faehrmann, Paul K.
    Meyer, Johannes Jakob
    [J]. PHYSICAL REVIEW A, 2022, 106 (04)
  • [10] Simulating Prethermalization Using Near-Term Quantum Computers
    Yang, Yilun
    Christianen, Arthur
    Coll-Vinent, Sandra
    Smelyanskiy, Vadim
    Banuls, Mari Carmen
    O'Brien, Thomas E.
    Wild, Dominik S.
    Cirac, J. Ignacio
    [J]. PRX QUANTUM, 2023, 4 (03):