Enhancing quantum utility: Simulating large-scale quantum spin chains on superconducting quantum computers

被引:3
|
作者
Chowdhury, Talal Ahmed [1 ,2 ]
Yu, Kwangmin [3 ]
Shamim, Mahmud Ashraf [4 ]
Kabir, M. L. [5 ]
Sufian, Raza Sabbir [6 ,7 ]
机构
[1] Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA
[2] Univ Dhaka, Dept Phys, POB 1000, Dhaka, Bangladesh
[3] Brookhaven Natl Lab, Computat Sci Initiat, Upton, NY 11973 USA
[4] Univ Alabama, Dept Phys & Astron, Tuscaloosa, AL 35487 USA
[5] Brookhaven Natl Lab, Collider Accelerator Dept, Upton, NY 11973 USA
[6] Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA
[7] Brookhaven Natl Lab, Phys Dept, Upton, NY 11973 USA
来源
PHYSICAL REVIEW RESEARCH | 2024年 / 6卷 / 03期
关键词
EXPONENTIAL OPERATORS; GROUND-STATE; DIMERIZATION; FORMULA; SYSTEMS;
D O I
10.1103/PhysRevResearch.6.033107
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present the quantum simulation of the frustrated quantum spin- 12 antiferromagnetic Heisenberg spin chain with competing nearest-neighbor (J1) and next-nearest-neighbor (J2) exchange interactions in the real superconducting quantum computer with qubits ranging up to 100. In particular, we implement the Hamiltonian with the next-nearest neighbor exchange interaction in conjunction with the nearest-neighbor interaction on IBM's superconducting quantum computer and carry out the time evolution of the spin chain by employing the first-order Trotterization. Furthermore, our implementation of the second-order Trotterization for the isotropic Heisenberg spin chain, involving only nearest-neighbor exchange interaction, enables precise measurement of the expectation values of staggered magnetization observable across a range of up to 100 qubits. Notably, in both cases, our approach results in a constant circuit depth in each Trotter step, independent of the number of qubits. Our demonstration of the accurate measurement of expectation values for the large-scale quantum system using superconducting quantum computers designates the quantum utility of these devices for investigating various properties of many-body quantum systems. This will be a stepping stone to achieving the quantum advantage over classical ones in simulating quantum systems before the fault tolerance quantum era.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Roadmap for the Large-Scale Quantum Computer
    DiVincenzo, David
    PHYSICAL REVIEW X, 2012, 2 (03):
  • [32] Towards Large-Scale Quantum Networks
    Kozlowski, Wojciech
    Wehner, Stephanie
    PROCEEDINGS OF THE 6TH ACM INTERNATIONAL CONFERENCE ON NANOSCALE COMPUTING AND COMMUNICATION, 2019,
  • [33] Efficient Quantum Simulation of Dynamic Correlations on Superconducting Quantum Computers
    Tacchino, Francesco
    Grossi, Michele
    Gerace, Dario
    Chiesa, Alessandro
    Santini, Paolo
    Carretta, Stefano
    Tavernelli, Ivano
    2019 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2019,
  • [34] Large-scale cluster quantum microcombs
    Ze Wang
    Kangkang Li
    Yue Wang
    Xin Zhou
    Yinke Cheng
    Boxuan Jing
    Fengxiao Sun
    Jincheng Li
    Zhilin Li
    Bingyan Wu
    Qihuang Gong
    Qiongyi He
    Bei-Bei Li
    Qi-Fan Yang
    Light: Science & Applications, 14 (1)
  • [35] Simulating Effective QED on Quantum Computers
    Stetina, Torin F.
    Ciavarella, Anthony
    Li, Xiaosong
    Wiebe, Nathan
    QUANTUM, 2022, 6 : 1 - 44
  • [36] Simulating thermal physics on quantum computers
    Jie Pan
    Nature Computational Science, 2021, 1 : 174 - 174
  • [37] Noisy gates for simulating quantum computers
    Di Bartolomeo, Giovanni
    Vischi, Michele
    Cesa, Francesco
    Wixinger, Roman
    Grossi, Michele
    Donadi, Sandro
    Bassi, Angelo
    PHYSICAL REVIEW RESEARCH, 2023, 5 (04):
  • [38] SIMULATING QUANTUM COMPUTERS WITH PROBABILISTIC METHODS
    Van den Nest, Maarten
    QUANTUM INFORMATION & COMPUTATION, 2011, 11 (9-10) : 784 - 812
  • [39] Simulating Chemistry Using Quantum Computers
    Kassal, Ivan
    Whitfield, James D.
    Perdomo-Ortiz, Alejandro
    Yung, Man-Hong
    Aspuru-Guzik, Alan
    ANNUAL REVIEW OF PHYSICAL CHEMISTRY, VOL 62, 2011, 62 : 185 - 207
  • [40] Simulating thermal physics on quantum computers
    Pan, Jie
    NATURE COMPUTATIONAL SCIENCE, 2021, 1 (03): : 174 - 174