Boosting the Modeling of Infrared and Raman Spectra of Bulk Phase Chromophores with Machine Learning

被引:0
|
作者
Kebabsa, Abir [1 ]
Maurel, Francois [1 ]
Bremond, Eric [1 ]
机构
[1] Univ Paris, ITODYS, CNRS, F-75013 Paris, France
关键词
INITIO MOLECULAR-DYNAMICS; AB-INITIO; VIBRATIONAL-SPECTRA; EXACT EXCHANGE; SYSTEMS; LIQUID; WATER; PERFORMANCES; SPECTROSCOPY; SIMULATIONS;
D O I
10.1021/acs.jctc.4c00630
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In the field of vibrational spectroscopy simulation, hybrid approximations to Kohn-Sham density-functional theory (KS-DFT) are often considered computationally prohibitive due to the significant effort required to evaluate the exchange-correlation potential in planewave codes. In this Letter, we show that by leveraging the porting of KS-DFT on GPU and incorporating machine-learning techniques, simulating IR and Raman spectra of real-life chromophores in bulk aqueous solution becomes a routine application at this level of theory.
引用
收藏
页码:7009 / 7015
页数:7
相关论文
共 50 条
  • [41] Processing of phase pure and dense bulk EuTiO3 ceramics and their infrared reflectivity spectra
    Kachlik, M.
    Maca, K.
    Goian, V.
    Kamba, S.
    MATERIALS LETTERS, 2012, 74 : 16 - 18
  • [42] GAS-PHASE RAMAN SPECTROSCOPY . VIBRATIONAL SPECTRA (INFRARED AND RAMAN) OF HEXACHLORODISILANE (GAS, LIQUID, AND SOLID) AND ASSIGNMENT OF FUNDAMENTALS
    OZIN, GA
    JOURNAL OF THE CHEMICAL SOCIETY A -INORGANIC PHYSICAL THEORETICAL, 1969, (19): : 2952 - &
  • [43] Rain garden infiltration rate modeling using gradient boosting machine and deep learning techniques
    Kumar, Sandeep
    Singh, K. K.
    WATER SCIENCE AND TECHNOLOGY, 2021, 84 (09) : 2366 - 2379
  • [44] Failure detection in robotic arms using statistical modeling, machine learning and hybrid gradient boosting
    Costa, Marcelo Azevedo
    Wullt, Bernhard
    Norrlof, Mikael
    Gunnarsson, Svante
    MEASUREMENT, 2019, 146 : 425 - 436
  • [45] Exploration of machine learning methods for the classification of infrared limb spectra of polar stratospheric clouds
    Sedona, Rocco
    Hoffmann, Lars
    Spang, Reinhold
    Cavallaro, Gabriele
    Griessbach, Sabine
    Hoepfner, Michael
    Book, Matthias
    Riedel, Morris
    ATMOSPHERIC MEASUREMENT TECHNIQUES, 2020, 13 (07) : 3661 - 3682
  • [46] Machine learning applied to near-infrared spectra for clinical pleural effusion classification
    Zhongjian Chen
    Keke Chen
    Yan Lou
    Jing Zhu
    Weimin Mao
    Zhengbo Song
    Scientific Reports, 11
  • [47] Machine learning applied to near-infrared spectra for clinical pleural effusion classification
    Chen, Zhongjian
    Chen, Keke
    Lou, Yan
    Zhu, Jing
    Mao, Weimin
    Song, Zhengbo
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [48] Machine Learning for Quantitative Structural Information from Infrared Spectra: The Case of Palladium Hydride
    Usoltsev, Oleg
    Tereshchenko, Andrei
    Skorynina, Alina
    Kozyr, Elizaveta
    Soldatov, Alexander
    Safonova, Olga
    Clark, Adam H.
    Ferri, Davide
    Nachtegaal, Maarten
    Bugaev, Aram
    SMALL METHODS, 2024, 8 (07)
  • [49] Discriminating milk storage time with mid-infrared spectra combined with machine learning
    Su, J.
    Chen, Y.
    Nan, L.
    Wang, H.
    Luo, X.
    Fan, Y.
    Zhang, Y.
    Du, C.
    Gengler, N.
    Zhang, S.
    INTERNATIONAL DAIRY JOURNAL, 2024, 152
  • [50] Computing Bulk Phase Raman Optical Activity Spectra from ab initio Molecular Dynamics Simulations
    Brehm, Martin
    Thomas, Martin
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2017, 8 (14): : 3409 - 3414