Boosting the Modeling of Infrared and Raman Spectra of Bulk Phase Chromophores with Machine Learning

被引:0
|
作者
Kebabsa, Abir [1 ]
Maurel, Francois [1 ]
Bremond, Eric [1 ]
机构
[1] Univ Paris, ITODYS, CNRS, F-75013 Paris, France
关键词
INITIO MOLECULAR-DYNAMICS; AB-INITIO; VIBRATIONAL-SPECTRA; EXACT EXCHANGE; SYSTEMS; LIQUID; WATER; PERFORMANCES; SPECTROSCOPY; SIMULATIONS;
D O I
10.1021/acs.jctc.4c00630
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In the field of vibrational spectroscopy simulation, hybrid approximations to Kohn-Sham density-functional theory (KS-DFT) are often considered computationally prohibitive due to the significant effort required to evaluate the exchange-correlation potential in planewave codes. In this Letter, we show that by leveraging the porting of KS-DFT on GPU and incorporating machine-learning techniques, simulating IR and Raman spectra of real-life chromophores in bulk aqueous solution becomes a routine application at this level of theory.
引用
收藏
页码:7009 / 7015
页数:7
相关论文
共 50 条
  • [21] Near Infrared Spectra Data Analysis by Using Machine Learning Algorithms
    Xiao, Perry
    Chen, Daqing
    INTELLIGENT COMPUTING, VOL 1, 2022, 506 : 532 - 544
  • [22] Fast characterization of biomass and waste by infrared spectra and machine It learning models
    Tao, Junyu
    Liang, Rui
    Li, Jian
    Yan, Beibei
    Chen, Guanyi
    Cheng, Zhanjun
    Li, Wanqing
    Lin, Fawei
    Hou, Lian
    JOURNAL OF HAZARDOUS MATERIALS, 2020, 387
  • [23] Deep Learning for Generating Phase-Conditioned Infrared Spectra
    Na, Gyoung S.
    ANALYTICAL CHEMISTRY, 2024, 96 (49) : 19659 - 19669
  • [24] Determining soil particle-size distribution from infrared spectra using machine learning predictions: Methodology and modeling
    Parent, Elizabeth Jeanne
    Parent, Serge-Etienne
    Parent, Leon Etienne
    PLOS ONE, 2021, 16 (07):
  • [25] Machine-learning models for Raman spectra analysis of twisted bilayer graphene
    Sheremetyeva, Natalya
    Lamparski, Michael
    Daniels, Colin
    Van Troeye, Benoit
    Meunier, Vincent
    CARBON, 2020, 169 : 455 - 464
  • [26] Comparing machine learning methods on Raman spectra from eight different spectrometers
    Lange, Christoph
    Borisyak, Maxim
    Kogler, Martin
    Born, Stefan
    Ziehe, Andreas
    Neubauer, Peter
    Bournazou, M. Nicolas Cruz
    SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2025, 334
  • [27] Comparison Testing of Machine Learning Algorithms Separability on Raman Spectra of Skin Cancer
    Serzhantov, Kirill A.
    Myakinin, Oleg O.
    Lisovskaya, Mariya G.
    Bratchenko, Ivan A.
    Moryatov, Alexander A.
    Kozlov, Sergey, V
    Zakharov, Valery P.
    BIOMEDICAL SPECTROSCOPY, MICROSCOPY, AND IMAGING, 2020, 11359
  • [28] Boosting phase contrast MRI performance in iNPH diagnostics by means of machine learning
    Vlasak, Ales
    Gerla, Vaclav
    Skalicky, Petr
    Mladek, Arnost
    Sedlak, Vojtech
    Vrana, Jiri
    Whitley, Helen
    Lhotska, Lenka
    Benes, Vladimir, Sr.
    Benes, Vladimir, Jr.
    Bubenikova, Adela
    Bradac, Ondrej
    FLUIDS AND BARRIERS OF THE CNS, 2022, 19
  • [29] Modeling Ionospheric TEC Using Gradient Boosting Based and Stacking Machine Learning Techniques
    Nigusie, Ayanew
    Tebabal, Ambelu
    Galas, Roman
    SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS, 2024, 22 (03):
  • [30] Machine Learning Applied to Near-Infrared Spectra for Chicken Meat Classification
    Barbon Jr, Sylvio
    Ayub da Costa Barbon, Ana Paula
    Mantovani, Rafael Gomes
    Barbin, Douglas Fernandes
    JOURNAL OF SPECTROSCOPY, 2018, 2018