Boosting the Modeling of Infrared and Raman Spectra of Bulk Phase Chromophores with Machine Learning

被引:0
|
作者
Kebabsa, Abir [1 ]
Maurel, Francois [1 ]
Bremond, Eric [1 ]
机构
[1] Univ Paris, ITODYS, CNRS, F-75013 Paris, France
关键词
INITIO MOLECULAR-DYNAMICS; AB-INITIO; VIBRATIONAL-SPECTRA; EXACT EXCHANGE; SYSTEMS; LIQUID; WATER; PERFORMANCES; SPECTROSCOPY; SIMULATIONS;
D O I
10.1021/acs.jctc.4c00630
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In the field of vibrational spectroscopy simulation, hybrid approximations to Kohn-Sham density-functional theory (KS-DFT) are often considered computationally prohibitive due to the significant effort required to evaluate the exchange-correlation potential in planewave codes. In this Letter, we show that by leveraging the porting of KS-DFT on GPU and incorporating machine-learning techniques, simulating IR and Raman spectra of real-life chromophores in bulk aqueous solution becomes a routine application at this level of theory.
引用
收藏
页码:7009 / 7015
页数:7
相关论文
共 50 条
  • [31] Machine-learning Prediction of Infrared Spectra of Interstellar Polycyclic Aromatic Hydrocarbons
    Kovacs, Peter
    Zhu, Xiaosi
    Carrete, Jesus
    Madsen, Georg K. H.
    Wang, Zhao
    ASTROPHYSICAL JOURNAL, 2020, 902 (02):
  • [32] Machine Learning Technique for Interpretation of Infrared Spectra Measured on Polymer Modified Binders
    Zofka, Adam
    Blazejowski, Krzysztof
    RILEM 252-CMB SYMPOSIUM: CHEMO-MECHANICAL CHARACTERIZATION OF BITUMINOUS MATERIALS, 2019, 20 : 281 - 286
  • [33] Raman and infrared spectra to monitor the phase transition of natural kyanite under static compression
    Gao, Jing
    Wu, Wanghua
    Jia, Lihui
    Wang, Ching-Pao
    Liu, Yingxin
    Xu, Chaowen
    Chen, Fei
    Fei, Chenhui
    Su, Wen
    JOURNAL OF RAMAN SPECTROSCOPY, 2020, 51 (10) : 2102 - 2111
  • [34] Raman and infrared spectra to monitor the phase transition of natural kyanite under static compression
    Gao, Jing (gaojing@mail.iggcas.ac.cn), 1600, John Wiley and Sons Ltd (51):
  • [35] In Situ Raman Spectra and Machine Learning Assistant Thermal Annealing Optimization for Effective Phototransistors
    Fan, Ruisi
    Yu, Jiuheng
    Xie, Zengqi
    Liu, Linlin
    ACS APPLIED MATERIALS & INTERFACES, 2025, 17 (12) : 18701 - 18710
  • [36] A Bond-Based Machine Learning Model for Molecular Polarizabilities and A Priori Raman Spectra
    Sowa, Jakub K.
    Rossky, Peter J.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2024, 20 (22) : 10071 - 10079
  • [37] Chondrogenic Cancer Grading by Combining Machine and Deep Learning with Raman Spectra of Histopathological Tissues
    Lazzini, Gianmarco
    D'Acunto, Mario
    APPLIED SCIENCES-BASEL, 2024, 14 (22):
  • [38] Comprehensive modeling of cell culture profile using Raman spectroscopy and machine learning
    Tanemura, Hiroki
    Kitamura, Ryunosuke
    Yamada, Yasuko
    Hoshino, Masato
    Kakihara, Hirofumi
    Nonaka, Koichi
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [39] Comprehensive modeling of cell culture profile using Raman spectroscopy and machine learning
    Hiroki Tanemura
    Ryunosuke Kitamura
    Yasuko Yamada
    Masato Hoshino
    Hirofumi Kakihara
    Koichi Nonaka
    Scientific Reports, 13
  • [40] Extensive evaluation of machine learning models and data preprocessings for Raman modeling in bioprocessing
    Poth, Michaela
    Magill, Gordon
    Filgertshofer, Alois
    Popp, Oliver
    Grosskopf, Tobias
    JOURNAL OF RAMAN SPECTROSCOPY, 2022, 53 (09) : 1580 - 1591