Boosting the Modeling of Infrared and Raman Spectra of Bulk Phase Chromophores with Machine Learning

被引:0
|
作者
Kebabsa, Abir [1 ]
Maurel, Francois [1 ]
Bremond, Eric [1 ]
机构
[1] Univ Paris, ITODYS, CNRS, F-75013 Paris, France
关键词
INITIO MOLECULAR-DYNAMICS; AB-INITIO; VIBRATIONAL-SPECTRA; EXACT EXCHANGE; SYSTEMS; LIQUID; WATER; PERFORMANCES; SPECTROSCOPY; SIMULATIONS;
D O I
10.1021/acs.jctc.4c00630
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In the field of vibrational spectroscopy simulation, hybrid approximations to Kohn-Sham density-functional theory (KS-DFT) are often considered computationally prohibitive due to the significant effort required to evaluate the exchange-correlation potential in planewave codes. In this Letter, we show that by leveraging the porting of KS-DFT on GPU and incorporating machine-learning techniques, simulating IR and Raman spectra of real-life chromophores in bulk aqueous solution becomes a routine application at this level of theory.
引用
收藏
页码:7009 / 7015
页数:7
相关论文
共 50 条
  • [1] Boosting Combinatorial Problem Modeling with Machine Learning
    Lombardi, Michele
    Milano, Michela
    PROCEEDINGS OF THE TWENTY-SEVENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2018, : 5472 - 5478
  • [2] AB INITIO MODELING OF RAMAN AND INFRARED SPECTRA OF CALCITE
    Kalinin, N. V.
    Saleev, V. A.
    COMPUTER OPTICS, 2018, 42 (02) : 263 - 266
  • [3] Transferability of Machine Learning Models for Predicting Raman Spectra
    Fang, Mandi
    Tang, Shi
    Fan, Zheyong
    Shi, Yao
    Xu, Nan
    He, Yi
    JOURNAL OF PHYSICAL CHEMISTRY A, 2024, 128 (12): : 2286 - 2294
  • [4] Raman and infrared spectra of phase E, a plausible hydrous phase in the mantle
    Mernagh, TP
    Liu, LG
    CANADIAN MINERALOGIST, 1998, 36 : 1217 - 1223
  • [5] A Machine Learning Protocol for Predicting Protein Infrared Spectra
    Ye, Sheng
    Zhong, Kai
    Zhang, Jinxiao
    Hu, Wei
    Hirst, Jonathan D.
    Zhang, Guozhen
    Mukamel, Shaul
    Jiang, Jun
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2020, 142 (45) : 19071 - 19077
  • [6] Machine learning molecular dynamics for the simulation of infrared spectra
    Gastegger, Michael
    Behler, Joerg
    Marquetand, Philipp
    CHEMICAL SCIENCE, 2017, 8 (10) : 6924 - 6935
  • [7] Automatic organofacies identification by means of Machine Learning on Raman spectra
    Sassarini, Natalia A. Vergara
    Schito, Andrea
    Gasparrini, Marta
    Michel, Pauline
    Corrado, Sveva
    INTERNATIONAL JOURNAL OF COAL GEOLOGY, 2023, 271
  • [8] Delta Machine Learning for Predicting Dielectric Properties and Raman Spectra
    Grumet, Manuel
    von Scarpatetti, Clara
    Bucko, Tomas
    Egger, David A.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2024, 128 (15): : 6464 - 6470
  • [9] Machine Learning Analysis of Raman Spectra of MoS2
    Mao, Yu
    Dong, Ningning
    Wang, Lei
    Chen, Xin
    Wang, Hongqiang
    Wang, Zixin
    Kislyakov, Ivan M.
    Wang, Jun
    NANOMATERIALS, 2020, 10 (11) : 1 - 13
  • [10] Modeling the infrared and raman spectra of silicon dioxide clusters absorbing water
    A. E. Galashev
    O. R. Rakhmanova
    L. A. Zemnukhova
    Russian Journal of Physical Chemistry A, 2011, 85