Physics-informed tracking of qubit fluctuations

被引:0
|
作者
Berritta, Fabrizio [1 ]
Krzywda, Jan A. [2 ,3 ]
Benestad, Jacob [4 ]
van der Heijden, Joost [5 ]
Fedele, Federico [1 ,6 ]
Fallahi, Saeed [7 ,8 ]
Gardner, Geoffrey C. [8 ]
Manfra, Michael J. [7 ,8 ,9 ,10 ]
van Nieuwenburg, Evert [2 ,3 ]
Danon, Jeroen [4 ]
Chatterjee, Anasua [1 ]
Kuemmeth, Ferdinand [1 ,5 ]
机构
[1] Univ Copenhagen, Niels Bohr Inst, Ctr Quantum Devices, DK-2100 Copenhagen, Denmark
[2] Leiden Univ, Inst Lorentz, POB 9506, NL-2300 RA Leiden, Netherlands
[3] Leiden Univ, Leiden Inst Adv Comp Sci, POB 9506, NL-2300 RA Leiden, Netherlands
[4] Norwegian Univ Sci & Technol, Ctr Quantum Spintron, Dept Phys, NO-7491 Trondheim, Norway
[5] QDevil, Quantum Machines, DK-2750 Ballerup, Denmark
[6] Univ Oxford, Dept Engn Sci, Oxford OX1 3PJ, England
[7] Purdue Univ, Dept Phys & Astron, W Lafayette, IN 47907 USA
[8] Purdue Univ, Birck Nanotechnol Ctr, W Lafayette, IN 47907 USA
[9] Purdue Univ, Elmore Family Sch Elect & Comp Engn, W Lafayette, IN 47907 USA
[10] Purdue Univ, Sch Mat Engn, W Lafayette, IN 47907 USA
来源
PHYSICAL REVIEW APPLIED | 2024年 / 22卷 / 01期
关键词
Probes;
D O I
10.1103/PhysRevApplied.22.014033
中图分类号
O59 [应用物理学];
学科分类号
摘要
Environmental fluctuations degrade the performance of solid-state qubits but can in principle be mitigated by real-time Hamiltonian estimation down to timescales set by the estimation efficiency. We implement a physics-informed and an adaptive Bayesian estimation strategy and apply them in real time to a semiconductor spin qubit. The physics-informed strategy propagates a probability distribution inside the quantum controller according to the Fokker-Planck equation, appropriate for describing the effects of nuclear spin diffusion in gallium arsenide. Evaluating and narrowing the anticipated distribution by a predetermined qubit probe sequence enables improved dynamical tracking of the uncontrolled magnetic field gradient within the singlet-triplet qubit. The adaptive strategy replaces the probe sequence by a small number of qubit probe cycles, with each probe time conditioned on the previous measurement outcomes, thereby further increasing the estimation efficiency. The combined real-time estimation strategy efficiently tracks low-frequency nuclear spin fluctuations in solid-state qubits, and can be applied to other qubit platforms by tailoring the appropriate update equation to capture their distinct noise sources.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Physics-Informed Computer Vision: A Review and Perspectives
    Banerjee, Chayan
    Nguyen, Kien
    Fookes, Clinton
    George, Karniadakis
    ACM Computing Surveys, 2024, 57 (01)
  • [42] A Taxonomic Survey of Physics-Informed Machine Learning
    Pateras, Joseph
    Rana, Pratip
    Ghosh, Preetam
    APPLIED SCIENCES-BASEL, 2023, 13 (12):
  • [43] PINNProv: Provenance for Physics-Informed Neural Networks
    de Oliveira, Lyncoln S.
    Kunstmann, Liliane
    Pina, Debora
    de Oliveira, Daniel
    Mattoso, Marta
    2023 INTERNATIONAL SYMPOSIUM ON COMPUTER ARCHITECTURE AND HIGH PERFORMANCE COMPUTING WORKSHOPS, SBAC-PADW, 2023, : 16 - 23
  • [44] Physics-Informed Neural Networks for Power Systems
    Misyris, George S.
    Venzke, Andreas
    Chatzivasileiadis, Spyros
    2020 IEEE POWER & ENERGY SOCIETY GENERAL MEETING (PESGM), 2020,
  • [45] Physics-informed deep learning for digital materials
    Zhizhou Zhang
    Grace X Gu
    Theoretical & Applied Mechanics Letters, 2021, 11 (01) : 52 - 57
  • [46] Physics-informed probabilistic slow feature analysis☆
    Puli, Vamsi Krishna
    Chiplunkar, Ranjith
    Huang, Biao
    AUTOMATICA, 2024, 169
  • [47] Physics-informed neural networks for diffraction tomography
    Amirhossein Saba
    Carlo Gigli
    Ahmed B.Ayoub
    Demetri Psaltis
    Advanced Photonics, 2022, 4 (06) : 48 - 59
  • [48] Physics-Informed Neural Networks for Quantum Control
    Norambuena, Ariel
    Mattheakis, Marios
    Gonzalez, Francisco J.
    Coto, Raul
    PHYSICAL REVIEW LETTERS, 2024, 132 (01)
  • [49] Robust Variational Physics-Informed Neural Networks
    Rojas, Sergio
    Maczuga, Pawel
    Muñoz-Matute, Judit
    Pardo, David
    Paszyński, Maciej
    Computer Methods in Applied Mechanics and Engineering, 2024, 425
  • [50] Physics-informed neural networks for periodic flows
    Shah, Smruti
    Anand, N. K.
    PHYSICS OF FLUIDS, 2024, 36 (07)