Physics-informed tracking of qubit fluctuations

被引:0
|
作者
Berritta, Fabrizio [1 ]
Krzywda, Jan A. [2 ,3 ]
Benestad, Jacob [4 ]
van der Heijden, Joost [5 ]
Fedele, Federico [1 ,6 ]
Fallahi, Saeed [7 ,8 ]
Gardner, Geoffrey C. [8 ]
Manfra, Michael J. [7 ,8 ,9 ,10 ]
van Nieuwenburg, Evert [2 ,3 ]
Danon, Jeroen [4 ]
Chatterjee, Anasua [1 ]
Kuemmeth, Ferdinand [1 ,5 ]
机构
[1] Univ Copenhagen, Niels Bohr Inst, Ctr Quantum Devices, DK-2100 Copenhagen, Denmark
[2] Leiden Univ, Inst Lorentz, POB 9506, NL-2300 RA Leiden, Netherlands
[3] Leiden Univ, Leiden Inst Adv Comp Sci, POB 9506, NL-2300 RA Leiden, Netherlands
[4] Norwegian Univ Sci & Technol, Ctr Quantum Spintron, Dept Phys, NO-7491 Trondheim, Norway
[5] QDevil, Quantum Machines, DK-2750 Ballerup, Denmark
[6] Univ Oxford, Dept Engn Sci, Oxford OX1 3PJ, England
[7] Purdue Univ, Dept Phys & Astron, W Lafayette, IN 47907 USA
[8] Purdue Univ, Birck Nanotechnol Ctr, W Lafayette, IN 47907 USA
[9] Purdue Univ, Elmore Family Sch Elect & Comp Engn, W Lafayette, IN 47907 USA
[10] Purdue Univ, Sch Mat Engn, W Lafayette, IN 47907 USA
来源
PHYSICAL REVIEW APPLIED | 2024年 / 22卷 / 01期
关键词
Probes;
D O I
10.1103/PhysRevApplied.22.014033
中图分类号
O59 [应用物理学];
学科分类号
摘要
Environmental fluctuations degrade the performance of solid-state qubits but can in principle be mitigated by real-time Hamiltonian estimation down to timescales set by the estimation efficiency. We implement a physics-informed and an adaptive Bayesian estimation strategy and apply them in real time to a semiconductor spin qubit. The physics-informed strategy propagates a probability distribution inside the quantum controller according to the Fokker-Planck equation, appropriate for describing the effects of nuclear spin diffusion in gallium arsenide. Evaluating and narrowing the anticipated distribution by a predetermined qubit probe sequence enables improved dynamical tracking of the uncontrolled magnetic field gradient within the singlet-triplet qubit. The adaptive strategy replaces the probe sequence by a small number of qubit probe cycles, with each probe time conditioned on the previous measurement outcomes, thereby further increasing the estimation efficiency. The combined real-time estimation strategy efficiently tracks low-frequency nuclear spin fluctuations in solid-state qubits, and can be applied to other qubit platforms by tailoring the appropriate update equation to capture their distinct noise sources.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Physics-informed neural network for modeling force and torque fluctuations in a random array of bidisperse spheres
    Cheng, Zihao
    Wachs, Anthony
    INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 2023, 169
  • [22] Enhanced physics-informed neural networks for hyperelasticity
    Abueidda, Diab W.
    Koric, Seid
    Guleryuz, Erman
    Sobh, Nahil A.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2023, 124 (07) : 1585 - 1601
  • [23] Physics-Informed Explainable Continual Learning on Graphs
    Peng, Ciyuan
    Tang, Tao
    Yin, Qiuyang
    Bai, Xiaomei
    Lim, Suryani
    Aggarwal, Charu C.
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (09) : 11761 - 11772
  • [24] SOBOLEV TRAINING FOR PHYSICS-INFORMED NEURAL NETWORKS
    Son, Hwijae
    Jang, Jin woo
    Han, Woo jin
    Hwang, Hyung ju
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2023, 21 (06) : 1679 - 1705
  • [25] Physics-informed neural networks for diffraction tomography
    Saba, Amirhossein
    Gigli, Carlo
    Ayoub, Ahmed B.
    Psaltis, Demetri
    ADVANCED PHOTONICS, 2022, 4 (06):
  • [26] Visual anemometry for physics-informed inference of wind
    Dabiri, John O.
    Howland, Michael F.
    Fu, Matthew K.
    Goldshmid, Roni H.
    NATURE REVIEWS PHYSICS, 2023, 5 (10) : 597 - 611
  • [27] Physics-informed differentiable method for piano modeling
    Simionato, Riccardo
    Fasciani, Stefano
    Holm, Sverre
    FRONTIERS IN SIGNAL PROCESSING, 2024, 3
  • [28] Physics-informed transient stability assessment of microgrids
    Mishra, Priyanka
    Zhang, Peng
    iEnergy, 2023, 2 (03): : 231 - 239
  • [29] Physics-Informed Neural Differential Equation Model
    Chen, Haowei
    Guo, Yu
    Yuan, Zhaolin
    Wang, Baojie
    Ban, Xiaojuan
    Beijing Youdian Daxue Xuebao/Journal of Beijing University of Posts and Telecommunications, 2024, 47 (04): : 90 - 97
  • [30] Physics-Informed Guided Disentanglement in Generative Networks
    Pizzati, Fabio
    Cerri, Pietro
    de Charette, Raoul
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (08) : 10300 - 10316