Analysis of a higher-order scheme for multi-term time-fractional integro-partial differential equations with multi-term weakly singular kernels

被引:2
|
作者
Santra, Sudarshan [1 ]
机构
[1] Indian Inst Sci, Dept Computat & Data Sci, Bangalore, India
关键词
Integro-partial differential equation; Volterra operator; Multi-term weakly singular kernels; Multi-term Caputo derivatives; Higher-order approximation; Hermite wavelet; Graded mesh; Error analysis; INTEGRODIFFERENTIAL EQUATION; DIFFUSION EQUATIONS; STABILITY;
D O I
10.1007/s11075-024-01927-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This work is focused on developing a hybrid numerical method that combines a higher-order finite difference method and multi-dimensional Hermite wavelets to address two-dimensional multi-term time-fractional integro-partial differential equations with multi-term weakly singular kernels having bounded and unbounded time derivatives at the initial time t=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t=0$$\end{document}. Specifically, the multi-term fractional operators are discretized using a higher-order approximation designed by employing different interpolation schemes based on linear, quadratic, and cubic interpolation leading to O(N-(4-alpha 1))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {O}(N<^>{-(4-\alpha _1)})$$\end{document} accuracy on a suitably chosen nonuniform mesh and O(N-alpha 1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {O}(N<^>{-\alpha _1})$$\end{document} accuracy on a uniformly distributed mesh. The weakly singular integral operators are approximated by a modified numerical quadrature, which is a combination of the composite trapezoidal approximation and the midpoint rule. The effects of the exponents of the weakly singular kernels over fractional orders are analyzed in terms of accuracy over uniform and nonuniform meshes for the solution having both bounded and unbounded time derivatives. The stability of the proposed semi-discrete scheme is derived based on L infinity\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>\infty $$\end{document}-norm for uniformly distributed temporal mesh. Further, we employ the uniformly distributed collocation points in spatial directions to estimate the tensor-based wavelet coefficients. Moreover, the convergence analysis of the fully discrete scheme is carried out based on L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>2$$\end{document}-norm leading to O(N-alpha 1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {O}(N<^>{-\alpha _1})$$\end{document} accuracy on a uniform mesh. It also highlights the higher-order accuracy over nonuniform mesh. Additionally, we discuss the convergence analysis of the proposed scheme in the context of the multi-term time-fractional diffusion equations involving time singularity demonstrating a O(N-(4-alpha 1))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {O}(N<^>{-(4-\alpha _1)})$$\end{document} accuracy on a nonuniform mesh with suitably chosen grading parameter. Note that the scheme reduces to O(N-alpha 1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {O}(N<^>{-\alpha _1})$$\end{document} accuracy on a uniform mesh. Several tests are performed on numerous examples in L infinity\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>\infty $$\end{document}- and L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>2$$\end{document}-norm to show the efficiency of the proposed method. Further, the solutions' nature and accuracy in terms of absolute point-wise error are illustrated through several isosurface plots for different regularities of the exact solution. These experiments confirm the theoretical accuracy and guarantee the convergence of approximations to the functions having time singularity, and the higher-order accuracy for a suitably chosen nonuniform mesh.
引用
收藏
页数:47
相关论文
共 50 条
  • [41] A STUDY OF MULTI-TERM TIME-FRACTIONAL DELAY DIFFERENTIAL SYSTEM WITH MONOTONIC CONDITIONS
    Singh, Vikram
    Chaudhary, Renu
    Pandey, Dwijendra N.
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2024, 48 (02): : 267 - 285
  • [42] A higher order unconditionally stable numerical technique for multi-term time-fractional diffusion and advection-diffusion equations
    Choudhary, Renu
    Singh, Satpal
    Kumar, Devendra
    COMPUTATIONAL & APPLIED MATHEMATICS, 2024, 43 (05):
  • [43] Exact Controllability of Multi-Term Time-Fractional Differential System with Sequencing Techniques
    Vikram Singh
    Dwijendra N. Pandey
    Indian Journal of Pure and Applied Mathematics, 2020, 51 : 105 - 120
  • [44] Classical unique continuation property for multi-term time-fractional evolution equations
    Ching-Lung Lin
    Gen Nakamura
    Mathematische Annalen, 2023, 385 : 551 - 574
  • [45] Multi-term time-fractional Bloch equations and application in magnetic resonance imaging
    Qin, Shanlin
    Liu, Fawang
    Turner, Ian
    Vegh, Viktor
    Yu, Qiang
    Yang, Qianqian
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 319 : 308 - 319
  • [46] A hybrid collocation method for the computational study of multi-term time fractional partial differential equations
    Ghafoor, Abdul
    Khan, Nazish
    Hussain, Manzoor
    Ullah, Rahman
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2022, 128 : 130 - 144
  • [47] Exact Controllability of Multi-Term Time-Fractional Differential System with Sequencing Techniques
    Singh, Vikram
    Pandey, Dwijendra N.
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2020, 51 (01): : 105 - 120
  • [48] A NUMERICAL STUDY FOR SOLVING MULTI-TERM FRACTIONAL-ORDER DIFFERENTIAL EQUATIONS
    Narsale, Sonali M.
    Jafari, Hossein
    Lodhi, Ram Kishun
    THERMAL SCIENCE, 2023, 27 (Special Issue 1): : S401 - S410
  • [49] Existence and uniqueness for a class of multi-term fractional differential equations
    Li, Qiuping
    Hou, Chuanxia
    Sun, Liying
    Han, Zhenlai
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2017, 53 (1-2) : 383 - 395
  • [50] Numerical solution of the mixed Volterra-Fredholm integro-differential multi-term equations of fractional order
    Roohollahi, A.
    Ghazanfari, B.
    Akhavan, S.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 376 (376)