Analysis of a higher-order scheme for multi-term time-fractional integro-partial differential equations with multi-term weakly singular kernels

被引:2
|
作者
Santra, Sudarshan [1 ]
机构
[1] Indian Inst Sci, Dept Computat & Data Sci, Bangalore, India
关键词
Integro-partial differential equation; Volterra operator; Multi-term weakly singular kernels; Multi-term Caputo derivatives; Higher-order approximation; Hermite wavelet; Graded mesh; Error analysis; INTEGRODIFFERENTIAL EQUATION; DIFFUSION EQUATIONS; STABILITY;
D O I
10.1007/s11075-024-01927-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This work is focused on developing a hybrid numerical method that combines a higher-order finite difference method and multi-dimensional Hermite wavelets to address two-dimensional multi-term time-fractional integro-partial differential equations with multi-term weakly singular kernels having bounded and unbounded time derivatives at the initial time t=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t=0$$\end{document}. Specifically, the multi-term fractional operators are discretized using a higher-order approximation designed by employing different interpolation schemes based on linear, quadratic, and cubic interpolation leading to O(N-(4-alpha 1))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {O}(N<^>{-(4-\alpha _1)})$$\end{document} accuracy on a suitably chosen nonuniform mesh and O(N-alpha 1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {O}(N<^>{-\alpha _1})$$\end{document} accuracy on a uniformly distributed mesh. The weakly singular integral operators are approximated by a modified numerical quadrature, which is a combination of the composite trapezoidal approximation and the midpoint rule. The effects of the exponents of the weakly singular kernels over fractional orders are analyzed in terms of accuracy over uniform and nonuniform meshes for the solution having both bounded and unbounded time derivatives. The stability of the proposed semi-discrete scheme is derived based on L infinity\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>\infty $$\end{document}-norm for uniformly distributed temporal mesh. Further, we employ the uniformly distributed collocation points in spatial directions to estimate the tensor-based wavelet coefficients. Moreover, the convergence analysis of the fully discrete scheme is carried out based on L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>2$$\end{document}-norm leading to O(N-alpha 1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {O}(N<^>{-\alpha _1})$$\end{document} accuracy on a uniform mesh. It also highlights the higher-order accuracy over nonuniform mesh. Additionally, we discuss the convergence analysis of the proposed scheme in the context of the multi-term time-fractional diffusion equations involving time singularity demonstrating a O(N-(4-alpha 1))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {O}(N<^>{-(4-\alpha _1)})$$\end{document} accuracy on a nonuniform mesh with suitably chosen grading parameter. Note that the scheme reduces to O(N-alpha 1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {O}(N<^>{-\alpha _1})$$\end{document} accuracy on a uniform mesh. Several tests are performed on numerous examples in L infinity\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>\infty $$\end{document}- and L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>2$$\end{document}-norm to show the efficiency of the proposed method. Further, the solutions' nature and accuracy in terms of absolute point-wise error are illustrated through several isosurface plots for different regularities of the exact solution. These experiments confirm the theoretical accuracy and guarantee the convergence of approximations to the functions having time singularity, and the higher-order accuracy for a suitably chosen nonuniform mesh.
引用
收藏
页数:47
相关论文
共 50 条
  • [21] STOCHASTIC MODEL FOR MULTI-TERM TIME-FRACTIONAL DIFFUSION EQUATIONS WITH NOISE
    Hosseini, Vahid Reza
    Remazani, Mohamad
    Zou, Wennan
    Banihashemi, Seddigheh
    THERMAL SCIENCE, 2021, 25 (SpecialIssue 2): : S287 - S293
  • [22] Simulation of the approximate solutions of the time-fractional multi-term wave equations
    Abdel-Rehim, E. A.
    El-Sayed, A. M. A.
    Hashem, A. S.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 73 (06) : 1134 - 1154
  • [23] Existence of Mild Solutions for Multi-Term Time-Fractional Random Integro-Differential Equations with Random Caratheodory Conditions
    Diop, Amadou
    Du, Wei-Shih
    AXIOMS, 2021, 10 (04)
  • [24] On multi-term proportional fractional differential equations and inclusions
    Wafa Shammakh
    Hadeel Z. Alzumi
    Zahra Albarqi
    Advances in Difference Equations, 2020
  • [25] Numerical solution of multi-term fractional differential equations
    Katsikadelis, John T.
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2009, 89 (07): : 593 - 608
  • [26] RESONANT BOUNDARY VALUE PROBLEMS FOR SINGULAR MULTI-TERM FRACTIONAL DIFFERENTIAL EQUATIONS
    Liu, Yuji
    Yang, Xiaohui
    DIFFERENTIAL EQUATIONS & APPLICATIONS, 2013, 5 (03): : 409 - 472
  • [27] On multi-term proportional fractional differential equations and inclusions
    Shammakh, Wafa
    Alzumi, Hadeel Z.
    Albarqi, Zahra
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [28] Existence and uniqueness of solutions for multi-term nonlinear fractional integro-differential equations
    Baleanu, Dumitru
    Nazemi, Sayyedeh Zahra
    Rezapour, Shahram
    ADVANCES IN DIFFERENCE EQUATIONS, 2013,
  • [29] Multi-term fractional differential equations, multi-order fractional differential systems and their numerical solution
    GNS Gesellschaft für numerische Simulation mbH, Am Gauberg 2, 38114 Braunschweig, Germany
    不详
    J. Eur. Syst. Autom., 2008, 6-8 (665-676):
  • [30] A novel approach for solving multi-term time fractional Volterra-Fredholm partial integro-differential equations
    Santra, Sudarshan
    Panda, Abhilipsa
    Mohapatra, Jugal
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2022, 68 (05) : 3545 - 3563