Synthetic Depth Image-Based Category-Level Object Pose Estimation With Effective Pose Decoupling and Shape Optimization

被引:0
|
作者
Yu, Sheng [1 ]
Zhai, Di-Hua [1 ]
Xia, Yuanqing [1 ,2 ]
机构
[1] Beijing Inst Technol, Sch Automat, Beijing 100081, Peoples R China
[2] Zhongyuan Univ Technol, Sch Automation, Zhengzhou 450007, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
Pose estimation; Three-dimensional displays; Point cloud compression; Solid modeling; Shape; Feature extraction; Computational modeling; 3-D reconstruction; object detection; point sampling; pose estimation; shape optimization;
D O I
10.1109/TIM.2024.3427799
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Category-level object pose estimation is a crucial task in the field of computer vision and finds numerous applications. However, the presence of unknown objects, significant shape, and scale variations within the same category pose challenges in this task. To address these challenges and achieve efficient and accurate category-level object pose estimation, we present EffectPose in this article. We first observe that objects of the same category often possess similar key regions, such as handles on cups. These key regions can establish correspondences for spatial poses, enabling pose estimation. To facilitate this, we employ a segmentation network to divide point clouds into multiple parts and map them to a shared latent space. Subsequently, by considering the correspondences between predicted implicit models and real point clouds for various key regions, we accomplish pose estimation. Since real object point clouds are typically dense and contain outliers, we propose a novel point cloud sampling network that can accurately select representative points for efficient correspondence construction. Furthermore, we decouple the scale and pose of objects based on the SIM(3) invariant descriptor and propose an online pose optimization method using this descriptor. This method enables online prediction and optimization of poses. Finally, to enhance pose estimation accuracy, we introduce a distance-weighted pose optimization method for pose refinement and adjustment. Experimental results demonstrate that our proposed method achieves efficient pose estimation and generalization by utilizing only synthetic depth images and a minimal number of network parameters, surpassing the performance of most existing methods.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] Robotic Grasp Detection Based on Category-Level Object Pose Estimation With Self-Supervised Learning
    Yu, Sheng
    Zhai, Di-Hua
    Xia, Yuanqing
    [J]. IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2024, 29 (01) : 625 - 635
  • [32] DualPoseNet: Category-level 6D Object Pose and Size Estimation Using Dual Pose Network with Refined Learning of Pose Consistency
    Lin, Jiehong
    Wei, Zewei
    Li, Zhihao
    Xu, Songcen
    Jia, Kui
    Li, Yuanqing
    [J]. 2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 3540 - 3549
  • [33] Fine segmentation and difference-aware shape adjustment for category-level 6DoF object pose estimation
    Chongpei Liu
    Wei Sun
    Jian Liu
    Xing Zhang
    Shimeng Fan
    Qiang Fu
    [J]. Applied Intelligence, 2023, 53 : 23711 - 23728
  • [34] Normalized Object Coordinate Space for Category-Level 6D Object Pose and Size Estimation
    Wang, He
    Sridhar, Srinath
    Huang, Jingwei
    Valentin, Julien
    Song, Shuran
    Guibas, Leonidas J.
    [J]. 2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 2637 - 2646
  • [35] Self-Supervised Category-Level 6D Object Pose Estimation with Deep Implicit Shape Representation
    Peng, Wanli
    Yan, Jianhang
    Wen, Hongtao
    Sun, Yi
    [J]. THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / THE TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 2082 - 2090
  • [36] Fine segmentation and difference-aware shape adjustment for category-level 6DoF object pose estimation
    Liu, Chongpei
    Sun, Wei
    Liu, Jian
    Zhang, Xing
    Fan, Shimeng
    Fu, Qiang
    [J]. APPLIED INTELLIGENCE, 2023, 53 (20) : 23711 - 23728
  • [37] Category-Level 6D Object Pose Estimation With Structure Encoder and Reasoning Attention
    Liu, Jierui
    Cao, Zhiqiang
    Tang, Yingbo
    Liu, Xilong
    Tan, Min
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (10) : 6728 - 6740
  • [38] TTA-COPE: Test-Time Adaptation for Category-Level Object Pose Estimation
    Lee, Taeyeop
    Tremblay, Jonathan
    Blukis, Valts
    Wen, Bowen
    Lee, Byeong-Uk
    Shin, Inkyu
    Birchfield, Stan
    Kweon, In So
    Yoon, Kuk-Jin
    [J]. 2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 21285 - 21295
  • [39] Leveraging SE(3) Equivariance for Self-Supervised Category-Level Object Pose Estimation
    Li, Xiaolong
    Weng, Yijia
    Yi, Li
    Guibas, Leonidas
    Abbott, A. Lynn
    Song, Shuran
    Wang, He
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [40] Category-Level Articulated Object 9D Pose Estimation via Reinforcement Learning
    Liu, Liu
    Du, Jianming
    Wu, Hao
    Yang, Xun
    Liu, Zhenguang
    Hong, Richang
    Wang, Meng
    [J]. PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 728 - 736