Synthetic Depth Image-Based Category-Level Object Pose Estimation With Effective Pose Decoupling and Shape Optimization

被引:0
|
作者
Yu, Sheng [1 ]
Zhai, Di-Hua [1 ]
Xia, Yuanqing [1 ,2 ]
机构
[1] Beijing Inst Technol, Sch Automat, Beijing 100081, Peoples R China
[2] Zhongyuan Univ Technol, Sch Automat, Zhengzhou 450007, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
Pose estimation; Three-dimensional displays; Point cloud compression; Solid modeling; Shape; Feature extraction; Computational modeling; 3-D reconstruction; object detection; point sampling; pose estimation; shape optimization;
D O I
10.1109/TIM.2024.3427799
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Category-level object pose estimation is a crucial task in the field of computer vision and finds numerous applications. However, the presence of unknown objects, significant shape, and scale variations within the same category pose challenges in this task. To address these challenges and achieve efficient and accurate category-level object pose estimation, we present EffectPose in this article. We first observe that objects of the same category often possess similar key regions, such as handles on cups. These key regions can establish correspondences for spatial poses, enabling pose estimation. To facilitate this, we employ a segmentation network to divide point clouds into multiple parts and map them to a shared latent space. Subsequently, by considering the correspondences between predicted implicit models and real point clouds for various key regions, we accomplish pose estimation. Since real object point clouds are typically dense and contain outliers, we propose a novel point cloud sampling network that can accurately select representative points for efficient correspondence construction. Furthermore, we decouple the scale and pose of objects based on the SIM(3) invariant descriptor and propose an online pose optimization method using this descriptor. This method enables online prediction and optimization of poses. Finally, to enhance pose estimation accuracy, we introduce a distance-weighted pose optimization method for pose refinement and adjustment. Experimental results demonstrate that our proposed method achieves efficient pose estimation and generalization by utilizing only synthetic depth images and a minimal number of network parameters, surpassing the performance of most existing methods.
引用
收藏
页码:1 / 1
页数:18
相关论文
共 50 条
  • [31] RBP-Pose: Residual Bounding Box Projection for Category-Level Pose Estimation
    Zhang, Ruida
    Di, Yan
    Lou, Zhiqiang
    Manhardi, Fabian
    Tombari, Federico
    Ji, Xiangyang
    COMPUTER VISION - ECCV 2022, PT I, 2022, 13661 : 655 - 672
  • [32] Category-Level Object Pose Estimation in Heavily Cluttered Scenes by Generalized Two-Stage Shape Reconstructor
    Tatemichi, Hiroki
    Kawanishi, Yasutomo
    Deguchi, Daisuke
    Ide, Ichiro
    Murase, Hiroshi
    IEEE ACCESS, 2024, 12 : 33440 - 33448
  • [33] Keypoint-Based Category-Level Object Pose Tracking from an RGB Sequence with Uncertainty Estimation
    Lin, Yunzhi
    Tremblay, Jonathan
    Tyree, Stephen
    Vela, Patricio A.
    Birchfield, Stan
    2022 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2022), 2022,
  • [34] Sca-pose: category-level 6D pose estimation with adaptive shape prior based on CNN and graph convolution
    Zuo, Guoyu
    Yu, Shan
    Yu, Shuangyue
    Liu, Hong
    Zhao, Min
    INTELLIGENT SERVICE ROBOTICS, 2025, 18 (02) : 351 - 361
  • [35] GarmentNets: Category-Level Pose Estimation for Garments via Canonical Space Shape Completion
    Chi, Cheng
    Song, Shuran
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 3304 - 3313
  • [36] Robotic Grasp Detection Based on Category-Level Object Pose Estimation With Self-Supervised Learning
    Yu, Sheng
    Zhai, Di-Hua
    Xia, Yuanqing
    IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2024, 29 (01) : 625 - 635
  • [37] Keypoint-Based Disentangled Pose Network for Category-Level 6-D Object Pose Tracking
    Sun, Shantong
    Liu, Rongke
    Sun, Shuqiao
    Park, Unsang
    IEEE COMPUTER GRAPHICS AND APPLICATIONS, 2022, 42 (05) : 28 - 36
  • [38] DualPoseNet: Category-level 6D Object Pose and Size Estimation Using Dual Pose Network with Refined Learning of Pose Consistency
    Lin, Jiehong
    Wei, Zewei
    Li, Zhihao
    Xu, Songcen
    Jia, Kui
    Li, Yuanqing
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 3540 - 3549
  • [39] Fine segmentation and difference-aware shape adjustment for category-level 6DoF object pose estimation
    Chongpei Liu
    Wei Sun
    Jian Liu
    Xing Zhang
    Shimeng Fan
    Qiang Fu
    Applied Intelligence, 2023, 53 : 23711 - 23728
  • [40] Normalized Object Coordinate Space for Category-Level 6D Object Pose and Size Estimation
    Wang, He
    Sridhar, Srinath
    Huang, Jingwei
    Valentin, Julien
    Song, Shuran
    Guibas, Leonidas J.
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 2637 - 2646