Synthetic Depth Image-Based Category-Level Object Pose Estimation With Effective Pose Decoupling and Shape Optimization

被引:0
|
作者
Yu, Sheng [1 ]
Zhai, Di-Hua [1 ]
Xia, Yuanqing [1 ,2 ]
机构
[1] Beijing Inst Technol, Sch Automat, Beijing 100081, Peoples R China
[2] Zhongyuan Univ Technol, Sch Automat, Zhengzhou 450007, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
Pose estimation; Three-dimensional displays; Point cloud compression; Solid modeling; Shape; Feature extraction; Computational modeling; 3-D reconstruction; object detection; point sampling; pose estimation; shape optimization;
D O I
10.1109/TIM.2024.3427799
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Category-level object pose estimation is a crucial task in the field of computer vision and finds numerous applications. However, the presence of unknown objects, significant shape, and scale variations within the same category pose challenges in this task. To address these challenges and achieve efficient and accurate category-level object pose estimation, we present EffectPose in this article. We first observe that objects of the same category often possess similar key regions, such as handles on cups. These key regions can establish correspondences for spatial poses, enabling pose estimation. To facilitate this, we employ a segmentation network to divide point clouds into multiple parts and map them to a shared latent space. Subsequently, by considering the correspondences between predicted implicit models and real point clouds for various key regions, we accomplish pose estimation. Since real object point clouds are typically dense and contain outliers, we propose a novel point cloud sampling network that can accurately select representative points for efficient correspondence construction. Furthermore, we decouple the scale and pose of objects based on the SIM(3) invariant descriptor and propose an online pose optimization method using this descriptor. This method enables online prediction and optimization of poses. Finally, to enhance pose estimation accuracy, we introduce a distance-weighted pose optimization method for pose refinement and adjustment. Experimental results demonstrate that our proposed method achieves efficient pose estimation and generalization by utilizing only synthetic depth images and a minimal number of network parameters, surpassing the performance of most existing methods.
引用
收藏
页码:1 / 1
页数:18
相关论文
共 50 条
  • [21] CatFormer: Category-Level 6D Object Pose Estimation with Transformer
    Yu, Sheng
    Zhai, Di-Hua
    Xia, Yuanqing
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 7, 2024, : 6808 - 6816
  • [22] Bi-directional attention based RGB-D fusion for category-level object pose and shape estimation
    Tang, Kaifeng
    Xu, Chi
    Chen, Ming
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (17) : 53043 - 53063
  • [23] Category-Level 6-D Object Pose Estimation With Shape Deformation for Robotic Grasp Detection
    Yu, Sheng
    Zhai, Di-Hua
    Guan, Yuyin
    Xia, Yuanqing
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2025, 36 (01) : 1857 - 1871
  • [24] An efficient network for category-level 6D object pose estimation
    Shantong Sun
    Rongke Liu
    Shuqiao Sun
    Xinxin Yang
    Guangshan Lu
    Signal, Image and Video Processing, 2021, 15 : 1643 - 1651
  • [25] Category-Level Object Detection, Pose Estimation and Reconstruction from Stereo Images
    Zhang, Chuanrui
    Ling, Yonggen
    Lu, Minglei
    Qin, Minghan
    Wang, Haoqian
    COMPUTER VISION - ECCV 2024, PT XXXIV, 2025, 15092 : 332 - 349
  • [26] Bi-directional attention based RGB-D fusion for category-level object pose and shape estimation
    Kaifeng Tang
    Chi Xu
    Ming Chen
    Multimedia Tools and Applications, 2024, 83 : 53043 - 53063
  • [27] SD-Pose: Structural Discrepancy Aware Category-Level 6D Object Pose Estimation
    Li, Guowei
    Zhu, Dongchen
    Zhang, Guanghui
    Shi, Wenjun
    Zhang, Tianyu
    Zhang, Xiaolin
    Li, Jiamao
    2023 IEEE/CVF WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2023, : 5674 - 5683
  • [28] Best Next-Viewpoint Recommendation by Selecting Minimum Pose Ambiguity for Category-Level Object Pose Estimation
    Hashim N.M.Z.
    Kawanishi Y.
    Deguchi D.
    Ide I.
    Amma A.
    Kobori N.
    Murase H.
    Seimitsu Kogaku Kaishi/Journal of the Japan Society for Precision Engineering, 2021, 87 (05): : 440 - 446
  • [29] GeoReF: Geometric Alignment Across Shape Variation for Category-level Object Pose Refinement
    Zheng, Linfang
    Tse, Tze Ho Elden
    Wang, Chen
    Sun, Yinghan
    Chen, Hua
    Leonardis, Ales
    Zhang, Wei
    Chang, Hyung Jin
    2024 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2024, : 10693 - 10703
  • [30] UDA-COPE: Unsupervised Domain Adaptation for Category-level Object Pose Estimation
    Lee, Taeyeop
    Lee, Byeong-Uk
    Shin, Inkyu
    Choe, Jaesung
    Shin, Ukcheol
    Kweon, In So
    Yoon, Kuk-Jin
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 14871 - 14880