Algebraic decay rates for 3D Navier-Stokes and Navier-Stokes-Coriolis equations in H•1/2

被引:0
|
作者
Ikeda, Masahiro [1 ,2 ]
Kosloff, Leonardo [3 ]
Niche, Cesar J. [4 ]
Planas, Gabriela [5 ]
机构
[1] Keio Univ, Fac Sci & Technol, Dept Math, 3-14-1 Hiyoshi,Kohoku Ku, Yokohama 2238522, Japan
[2] RIKEN, Ctr Adv Intelligence Project, Wako, Japan
[3] Univ Estadual Campinas, Inst Matemat Estat & Computacao Cient, Dept Matemat, Rua Sergio Buarque Holanda 651, BR-13083859 Campinas, SP, Brazil
[4] Univ Fed Rio De Janeiro, Inst Matemat, Dept Matemat Aplicada, BR-21941909 Rio De Janeiro, RJ, Brazil
[5] Univ Estadual Campinas, Inst Matemat Estat & Computacao Cient, Dept Matemat, Rua Sergio Buarque Holanda 651, BR-13083859 Campinas, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Decay rates; Navier-Stokes; Navier-Stokes-Coriolis; Critical spaces; WEAK SOLUTIONS; ILL-POSEDNESS;
D O I
10.1007/s00028-024-00991-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An algebraic upper bound for the decay rate of solutions to the Navier-Stokes and Navier-Stokes-Coriolis equations in the critical space H(center dot)1/2 is derived using the Fourier splitting method. Estimates are framed in terms of the decay character of initial data, leading to solutions with algebraic decay and showing in detail the roles played by the linear and nonlinear parts. The proof is carried on purely in the critical space, as no L-2(R-3) estimates are available for the solution. This is the first instance in which such a method is used for obtaining decay bounds in a critical space for a nonlinear equation.
引用
收藏
页数:25
相关论文
共 50 条
  • [41] The 3D incompressible Navier-Stokes equations with partial hyperdissipation
    Yang, Wanrong
    Jiu, Quansen
    Wu, Jiahong
    MATHEMATISCHE NACHRICHTEN, 2019, 292 (08) : 1823 - 1836
  • [42] Asymptotic stability of 3D Navier-Stokes equations with damping
    Yang, Rong
    Yang, Xin-Guang
    APPLIED MATHEMATICS LETTERS, 2021, 116 (116)
  • [43] On the geometric regularity conditions for the 3D Navier-Stokes equations
    Chae, Dongho
    Lee, Jihoon
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2017, 151 : 265 - 273
  • [44] Nonuniqueness in law of stochastic 3D Navier-Stokes equations
    Hofmanova, Martina
    Zhu, Rongchan
    Zhu, Xiangchan
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2024, 26 (01) : 163 - 260
  • [45] Remarks on regularity criteria for the 3d Navier-Stokes equations
    Liu, Qiao
    Pan, Meiling
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2023, 54 (03): : 868 - 875
  • [46] Exponential mixing for the 3D stochastic Navier-Stokes equations
    Odasso, Cyril
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 270 (01) : 109 - 139
  • [47] On the pressure regularity criterion of the 3D Navier-Stokes equations
    Zhang, Xingwei
    Jia, Yan
    Dong, Bo-Qing
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 393 (02) : 413 - 420
  • [48] On 3D Navier-Stokes equations: Regularization and uniqueness by delays
    Bessaih, Hakima
    Garrido-Atienza, Maria J.
    Schmalfuss, Bjoern
    PHYSICA D-NONLINEAR PHENOMENA, 2018, 376 : 228 - 237
  • [49] On the uniqueness of weak solutions for the 3D Navier-Stokes equations
    Chen, Qionglei
    Miao, Changxing
    Zhang, Zhifei
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2009, 26 (06): : 2165 - 2180
  • [50] Markov selections for the 3D stochastic Navier-Stokes equations
    Flandoli, Franco
    Romito, Marco
    PROBABILITY THEORY AND RELATED FIELDS, 2008, 140 (3-4) : 407 - 458