The 3D incompressible Navier-Stokes equations with partial hyperdissipation

被引:21
|
作者
Yang, Wanrong [1 ]
Jiu, Quansen [2 ]
Wu, Jiahong [3 ]
机构
[1] North Minzu Univ, Sch Math & Informat Sci, Ningxia 750021, Peoples R China
[2] Capital Normal Univ, Sch Math, Beijing 100037, Peoples R China
[3] Oklahoma State Univ, Dept Math, 401 Math Sci, Stillwater, OK 74078 USA
基金
美国国家科学基金会;
关键词
3D Navier-Stokes equations; fractional partial dissipation; global regularity; GLOBAL REGULARITY;
D O I
10.1002/mana.201700176
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The three-dimensional incompressible Navier-Stokes equations with the hyperdisipation (-Delta)(gamma) always possess global smooth solutions when gamma >= 5/4 Tao[6] and Barbato, Morandin and Romito [1] made logarithmic reductions in the dissipation and still obtained the global regularity. This paper makes a different type of reduction in the dissipation and proves the global existence and uniqueness in the H-1-functional setting
引用
收藏
页码:1823 / 1836
页数:14
相关论文
共 50 条