Algebraic decay rates for 3D Navier-Stokes and Navier-Stokes-Coriolis equations in H•1/2

被引:0
|
作者
Ikeda, Masahiro [1 ,2 ]
Kosloff, Leonardo [3 ]
Niche, Cesar J. [4 ]
Planas, Gabriela [5 ]
机构
[1] Keio Univ, Fac Sci & Technol, Dept Math, 3-14-1 Hiyoshi,Kohoku Ku, Yokohama 2238522, Japan
[2] RIKEN, Ctr Adv Intelligence Project, Wako, Japan
[3] Univ Estadual Campinas, Inst Matemat Estat & Computacao Cient, Dept Matemat, Rua Sergio Buarque Holanda 651, BR-13083859 Campinas, SP, Brazil
[4] Univ Fed Rio De Janeiro, Inst Matemat, Dept Matemat Aplicada, BR-21941909 Rio De Janeiro, RJ, Brazil
[5] Univ Estadual Campinas, Inst Matemat Estat & Computacao Cient, Dept Matemat, Rua Sergio Buarque Holanda 651, BR-13083859 Campinas, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Decay rates; Navier-Stokes; Navier-Stokes-Coriolis; Critical spaces; WEAK SOLUTIONS; ILL-POSEDNESS;
D O I
10.1007/s00028-024-00991-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An algebraic upper bound for the decay rate of solutions to the Navier-Stokes and Navier-Stokes-Coriolis equations in the critical space H(center dot)1/2 is derived using the Fourier splitting method. Estimates are framed in terms of the decay character of initial data, leading to solutions with algebraic decay and showing in detail the roles played by the linear and nonlinear parts. The proof is carried on purely in the critical space, as no L-2(R-3) estimates are available for the solution. This is the first instance in which such a method is used for obtaining decay bounds in a critical space for a nonlinear equation.
引用
收藏
页数:25
相关论文
共 50 条
  • [31] Stokes and Navier-Stokes equations with Navier boundary conditions
    Acevedo Tapia, P.
    Amrouche, C.
    Conca, C.
    Ghosh, A.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 285 : 258 - 320
  • [32] The 3D Navier-Stokes Problem
    Doering, Charles R.
    ANNUAL REVIEW OF FLUID MECHANICS, 2009, 41 : 109 - 128
  • [33] A remark on the decay of solutions to the 3-D Navier-Stokes equations
    Zhou, Yong
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2007, 30 (10) : 1223 - 1229
  • [34] Algebraic splitting for incompressible Navier-Stokes equations
    Henriksen, MO
    Holmen, J
    JOURNAL OF COMPUTATIONAL PHYSICS, 2002, 175 (02) : 438 - 453
  • [35] NAVIER-STOKES EQUATIONS
    STUART, CA
    QUARTERLY JOURNAL OF MATHEMATICS, 1971, 22 (86): : 309 - &
  • [36] Temporal decay for the generalized Navier-Stokes equations
    Zhao, Jihong
    Zheng, Lifei
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2016, 141 : 191 - 210
  • [37] SPATIAL DECAY ESTIMATE FOR THE NAVIER-STOKES EQUATIONS
    ELCRAT, AR
    SIGILLITO, VG
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1979, 30 (03): : 449 - 455
  • [38] Gevrey regularity of solutions to the 3D Navier-Stokes equations
    Biswas, Animikh
    Swanson, David
    Fluids and Waves: Recent Trends in Applied Analysis, 2007, 440 : 83 - 90
  • [39] On the vorticity direction and the regularity of 3D Navier-Stokes equations
    Berselli, Luigi C.
    NONLINEARITY, 2023, 36 (08) : 4303 - 4313
  • [40] On endpoint regularity criterion of the 3D Navier-Stokes equations
    Li, Zhouyu
    Zhou, Daoguo
    DYNAMICS OF PARTIAL DIFFERENTIAL EQUATIONS, 2021, 18 (01) : 71 - 80