Power-Law Entanglement and Hilbert Space Fragmentation in Nonreciprocal Quantum Circuits

被引:1
|
作者
Klocke, K. [1 ]
Moore, J. E. [1 ,2 ]
Buchhold, M. [3 ]
机构
[1] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[2] Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA 94720 USA
[3] Univ Cologne, Inst Theoret Phys, D-50937 Cologne, Germany
关键词
CROSSOVER SCALING FUNCTIONS; CONSERVATION-LAWS; MODEL; DEPOSITION; EVAPORATION; CHAIN;
D O I
10.1103/PhysRevLett.133.070401
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum circuits utilizing measurement to evolve a quantum wave function offer a new and rich playground to engineer unconventional entanglement dynamics. Here, we introduce a hybrid, nonreciprocal setup featuring a quantum circuit, whose updates are conditioned on the state of a classical dynamical agent. In our example the circuit is represented by a Majorana quantum chain controlled by a classical N- state Potts chain undergoing pair flips. The local orientation of the classical spins controls whether randomly drawn local measurements on the quantum chain are allowed or not. This imposes a dynamical kinetic constraint on the entanglement growth, described by the transfer matrix of an N- colored loop model. It yields an equivalent description of the circuit by an SU ( N )-symmetric Temperley-Lieb Hamiltonian or by a kinetically constrained surface growth model for an N- component height field. For N = 2 , we find a diffusive growth of the half-chain entanglement toward a stationary profile S(L) ( L ) L 1 = 2 for L sites. For N >= 3 , the kinetic constraints impose Hilbert space fragmentation, yielding subdiffusive growth toward S(L) ( L ) L 0 . 57 . This showcases how the control by a classical dynamical agent can enrich the entanglement dynamics in quantum circuits, paving a route toward novel entanglement dynamics in nonreciprocal hybrid circuit architectures.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Phase space noncommutativity, power-law inflation and quantum cosmology
    Rasouli, S. M. M.
    Marto, Joao
    CHAOS SOLITONS & FRACTALS, 2024, 187
  • [2] Maximal vectors in Hilbert space and quantum entanglement
    Arveson, William
    JOURNAL OF FUNCTIONAL ANALYSIS, 2009, 256 (05) : 1476 - 1510
  • [3] Power-law corrections to entanglement entropy of horizons
    Das, Saurya
    Shankaranarayanan, S.
    Sur, Sourav
    PHYSICAL REVIEW D, 2008, 77 (06):
  • [4] Hilbert space fragmentation in open quantum systems
    Li, Yahui
    Sala, Pablo
    Pollmann, Frank
    PHYSICAL REVIEW RESEARCH, 2023, 5 (04):
  • [5] Strong fragmentation and coagulation with power-law rates
    Banasiak, Jacek
    Lamb, Wilson
    Langer, Matthias
    JOURNAL OF ENGINEERING MATHEMATICS, 2013, 82 (01) : 199 - 215
  • [6] Strong fragmentation and coagulation with power-law rates
    Jacek Banasiak
    Wilson Lamb
    Matthias Langer
    Journal of Engineering Mathematics, 2013, 82 : 199 - 215
  • [7] Protostellar fragmentation in a power-law density distribution
    Burkert, A
    Bate, MR
    Bodenheimer, P
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 1997, 289 (03) : 497 - 504
  • [8] Entanglement and fluctuations in the XXZ model with power-law interactions
    Frerot, Irenee
    Naldesi, Piero
    Roscilde, Tommaso
    PHYSICAL REVIEW B, 2017, 95 (24)
  • [9] Quantum mechanics in power-law potentials
    Mahajan, Sanjoy
    AMERICAN JOURNAL OF PHYSICS, 2020, 88 (06) : 431 - 432
  • [10] Model of a fragmentation process and its power-law behavior
    1600, American Physical Society, Melville, United States (64):