Lateral photoconductivity of InAs/GaAs quantum dots for 1.5 μm-wavelength excitation photoconductive terahertz antenna devices

被引:0
|
作者
Kaizu, Toshiyuki [1 ,4 ]
Kojima, Osamu [1 ,5 ]
Minami, Yasuo [2 ,6 ]
Kitada, Takahiro [2 ,7 ]
Harada, Yukihiro [1 ]
Kita, Takashi [1 ]
Wada, Osamu [3 ]
机构
[1] Kobe Univ, Grad Sch Engn, 1-1 Rokkodai, Kobe 6578501, Japan
[2] Tokushima Univ, Grad Sch Technol Ind & Social Sci, 2-1 Minamijosanjima, Tokushima 7708506, Japan
[3] Kobe Univ, Off Acad & Ind Innovat Oacis, 1-1 Rokkodai, Kobe 6578501, Japan
[4] Kyoto Univ, Ctr Promot Interdisciplinary Educ & Res, Nanotechnol Hub, Sakyo ku, Kyoto 6068501, Japan
[5] Chiba Inst Technol, Dept Elect & Elect Engn, 2-17-1 Tsudanuma, Narashino, Chiba 2750016, Japan
[6] Nihon Univ, Coll Ind Technol, 1-2-1 Izumi Cho, Narashino, Chiba 2758575, Japan
[7] Natl Inst Technol Matsue Coll, 14-4 Nishi Ikumacho, Matsue, Shimane 6908518, Japan
关键词
quantum dot; lateral photoconductivity; telecom wavelength; terahertz antenna; HIGH-FIELD TRANSPORT; GAAS; GENERATION;
D O I
10.35848/1347-4065/ad6543
中图分类号
O59 [应用物理学];
学科分类号
摘要
We report lateral photoconductive properties of multilayer-stacked undoped InAs/GaAs quantum dots (QDs) for the application of photoconductive terahertz (THz) antenna devices that operate in a 1.5 mu m-telecom-wavelength band. The excitation power-dependent photocurrent showed a high value without saturation under high excitation power for the excitation wavelength of 1460 nm. From the reflection pump-probe signal, a fast photocarrier lifetime was derived. These results, together with the low dark current characteristic, support the applicability of the multilayer-stacked undoped InAs/GaAs QDs to photoconductive THz antennas operating in a 1.5 mu m-wavelength band.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Photoconductivity of an InAs/GaAs self-assembled quantum dot photoconductive THz antenna
    Yadav, Amit
    Gorodetsky, Andrei
    Avrutin, Eugene
    Fedorova, Ksenia A.
    Rafailov, Edik U.
    2017 CONFERENCE ON LASERS AND ELECTRO-OPTICS EUROPE & EUROPEAN QUANTUM ELECTRONICS CONFERENCE (CLEO/EUROPE-EQEC), 2017,
  • [2] Terahertz emission from InAs/GaAs quantum dot based photoconductive devices
    Daghestani, N. S.
    Cataluna, M. A.
    Berry, G.
    Ross, G.
    Rose, M. J.
    APPLIED PHYSICS LETTERS, 2011, 98 (18)
  • [3] InAs/GaAs quantum dots optically active at 1.5 μm
    da Silva, MJ
    Quivy, AA
    Martini, S
    Lamas, TE
    da Silva, ECF
    Leite, JR
    APPLIED PHYSICS LETTERS, 2003, 82 (16) : 2646 - 2648
  • [4] Dynamic response of 1.3-μm-wavelength InGaAs/GaAs quantum dots
    Zhang, L
    Boggess, TF
    Deppe, DG
    Huffaker, DL
    Shchekin, OB
    Cao, C
    APPLIED PHYSICS LETTERS, 2000, 76 (10) : 1222 - 1224
  • [5] Strain engineered InAs/GaAs quantum dots for 1.5 μm emitters
    Le Ru, EC
    Howe, P
    Jones, TS
    Murray, R
    2ND INTERNATIONAL CONFERENCE ON SEMICONDUCTOR QUANTUM DOTS, 2003, : 1221 - 1224
  • [6] Pump dependent carrier lifetimes in InAs/GaAs quantum dot photoconductive terahertz antenna structures
    Gorodetsky, Andrei
    Bazieva, Natalia
    Rafailov, Edik U.
    JOURNAL OF APPLIED PHYSICS, 2019, 125 (15)
  • [7] Structural and optical properties of InAs/GaAs quantum dots emitting at 1.5 μm
    Gong, Z
    Fang, ZD
    Miao, ZH
    Niu, ZC
    Feng, SL
    JOURNAL OF CRYSTAL GROWTH, 2005, 274 (1-2) : 78 - 84
  • [8] 1.3-1.5-μm-wavelength GaAs/InAs superlattice quantum-dot light-emitting diodes grown on InP (411)A substrates
    Mori, J
    Nakano, T
    Shimada, T
    Hasegawa, S
    Asahi, H
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 2-LETTERS & EXPRESS LETTERS, 2004, 43 (7A): : L901 - L903
  • [9] Multilayer structures with quantum dots in the InAs/GaAs system emitting at a wavelength of 1.3 μm
    Tsyrlin, GÉ
    Polyakov, NK
    Egorov, VA
    Petrov, VN
    Volovik, BV
    Sizov, DS
    Tsatsul'nikov, AF
    Ustinov, VM
    TECHNICAL PHYSICS LETTERS, 2000, 26 (05) : 423 - 425
  • [10] Multilayer structures with quantum dots in the InAs/GaAs system emitting at a wavelength of 1.3 μm
    G. É. Tsyrlin
    N. K. Polyakov
    V. A. Egorov
    V. N. Petrov
    B. V. Volovik
    D. S. Sizov
    A. F. Tsatsul’nikov
    V. M. Ustinov
    Technical Physics Letters, 2000, 26 : 423 - 425