A Framework for the Estimation of Uncertainties and Spectral Error Correlation in Sentinel-2 Level-2A Data Products

被引:0
|
作者
Gorrono, Javier [1 ]
Guanter, Luis [1 ,2 ]
Graf, Lukas Valentin [3 ,4 ]
Gascon, Ferran [5 ]
机构
[1] Univ Politecn Valencia, Res Inst Water & Environm Engn, Valencia 46022, Spain
[2] Environm Def Fund, NL-1017 LN Amsterdam, Netherlands
[3] Swiss Fed Inst Technol, Inst Agr Sci, Crop Sci Grp, CH-8092 Zurich, Switzerland
[4] Agroscope, Div Agroecol & Environm, Earth Observat Agroecosyst Team, CH-8046 Zurich, Switzerland
[5] European Space Agcy, I-00044 Frascati, Italy
关键词
Uncertainty; Reflectivity; Land surface; Atmospheric modeling; Correlation; Ocean temperature; Mathematical models; Copernicus; Level-2A; spectral error correlation; surface reflectance; uncertainty; RADIATIVE-TRANSFER CALCULATIONS; LIBRADTRAN SOFTWARE PACKAGE; ATMOSPHERIC CORRECTION; SOLSPEC SPECTROMETER; REFLECTANCE; IRRADIANCE; RETRIEVAL; ATLAS; NM;
D O I
10.1109/TGRS.2024.3435021
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The Copernicus Sentinel-2 (S2) satellite mission acquires high spatial resolution optical imagery over land and coastal areas. Delivering uncertainty estimates and spectral error correlation alongside S2 data products facilitates the constrain of retrieval algorithms, propagates further downstream the retrieval uncertainty, and, finally, makes informed decisions to end-users. This study presents a framework to produce uncertainty estimates and spectral error correlation associated with the S2 L2A data products (i.e., surface reflectance). This framework has been implemented in a prototype code available at https://doi.org/10.5281/zenodo.11971517. The uncertainty considers both the Level-1 (L1) uncertainty estimates for the top-of-atmosphere (TOA) reflectance factor and the atmospheric correction. The L2A error distribution cannot be systematically described as a normal distribution; the transformation can be nonlinear and without an explicit mathematical model. Thus, a multivariate Monte Carlo model (MCM) rather than the law of propagation of uncertainty (LPU) is selected for uncertainty propagation. We show results for surface reflectance uncertainty over the Amazon forest and Libya4 desert site. It illustrates the large uncertainty and spectral error correlation variations depending on the scene. The comparison of a multivariate MCM against an LPU propagation methodology indicates the limitations of the latter for scenes dominated by the atmospheric path. Its implementation as an operational per-pixel processing and dissemination of both the uncertainty and spectral error correlation becomes challenging. Therefore, this methodology is not expected to run at an operational level but serves as the basis to define a strategy for an operational one.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] FEATURE SELECTION ON SENTINEL-2 MULTI-SPECTRAL IMAGERY FOR EFFICIENT TREE COVER ESTIMATION
    Nazir, Usman
    Uppal, Momin
    Tahir, Muhammad
    Khalid, Zubair
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 2946 - 2949
  • [42] Machine Learning Based Estimation of Coastal Bathymetry From ICESat-2 and Sentinel-2 Data
    Xu, Nan
    Wang, Lin
    Zhang, Han-Su
    Tang, Shilin
    Mo, Fan
    Ma, Xin
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 1748 - 1755
  • [43] Synergistic estimation of soil salinity based on Sentinel-1 image texture and Sentinel-2 salinity spectral indices
    Yin, Haoyuan
    Chen, Ce
    He, Yujie
    Jia, Jiangdong
    Chen, Yinwen
    Du, Ruiqi
    Xiang, Ru
    Zhang, Xing
    Zhang, Zhitao
    JOURNAL OF APPLIED REMOTE SENSING, 2023, 17 (01) : 18502
  • [44] Aboveground biomass estimation and mapping using Sentinel-2 data in a dry afromontane forest
    Tetemke, Buruh Abebe
    Birhane, Emiru
    Rannestad, Meley Mekonen
    Eid, Tron
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2024, : 9461 - 9479
  • [45] Within-Field Rice Yield Estimation Based on Sentinel-2 Satellite Data
    Franch, Belen
    San Bautista, Alberto
    Fita, David
    Rubio, Constanza
    Tarrazo-Serrano, Daniel
    Sanchez, Antonio
    Skakun, Sergii
    Vermote, Eric
    Becker-Reshef, Inbal
    Uris, Antonio
    REMOTE SENSING, 2021, 13 (20)
  • [46] DEVELOPMENT OF FUSION APPROACH FOR ESTIMATION OF VEGETATION FRACTION COVER WITH DRONE AND SENTINEL-2 DATA
    Maurya, Ajay Kumar
    Singh, Dharmendra
    Singh, K. P.
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 7448 - 7451
  • [47] Estimation of Leaf Area Index for Wheat Crop Using Sentinel-2 Satellite Data
    Yadav, Manoj
    Theerdh, Manikyala Sriram
    Giri, Ghanshyam
    Upreti, Hitesh
    Das Singhal, Gopal
    Narakala, Likith Muni
    WORLD ENVIRONMENTAL AND WATER RESOURCES CONGRESS 2024: CLIMATE CHANGE IMPACTS ON THE WORLD WE LIVE IN, 2024, : 948 - 959
  • [48] China's larch stock volume estimation using Sentinel-2 and LiDAR data
    Yu, Tao
    Pang, Yong
    Liang, Xiaojun
    Jia, Wen
    Bai, Yu
    Fan, Yilin
    Chen, Dongsheng
    Liu, Xianzhao
    Deng, Guang
    Li, Chonggui
    Sun, Xiangnan
    Zhang, Zhidong
    Jia, Weiwei
    Zhao, Zhonghua
    Wang, Xiao
    GEO-SPATIAL INFORMATION SCIENCE, 2023, 26 (03) : 392 - 405
  • [49] An Operational Framework for Mapping Irrigated Areas at Plot Scale Using Sentinel-1 and Sentinel-2 Data
    Bazzi, Hassan
    Baghdadi, Nicolas
    Amin, Ghaith
    Fayad, Ibrahim
    Zribi, Mehrez
    Demarez, Valerie
    Belhouchette, Hatem
    REMOTE SENSING, 2021, 13 (13)
  • [50] Combining PlanetScope and Sentinel-2 images with environmental data for improved wheat yield estimation
    Farmonov, Nizom
    Amankulova, Khilola
    Szatmari, Jozsef
    Urinov, Jamol
    Narmanov, Zafar
    Nosirov, Jakhongir
    Mucsi, Laszlo
    INTERNATIONAL JOURNAL OF DIGITAL EARTH, 2023, 16 (01) : 847 - 867