A Framework for the Estimation of Uncertainties and Spectral Error Correlation in Sentinel-2 Level-2A Data Products

被引:0
|
作者
Gorrono, Javier [1 ]
Guanter, Luis [1 ,2 ]
Graf, Lukas Valentin [3 ,4 ]
Gascon, Ferran [5 ]
机构
[1] Univ Politecn Valencia, Res Inst Water & Environm Engn, Valencia 46022, Spain
[2] Environm Def Fund, NL-1017 LN Amsterdam, Netherlands
[3] Swiss Fed Inst Technol, Inst Agr Sci, Crop Sci Grp, CH-8092 Zurich, Switzerland
[4] Agroscope, Div Agroecol & Environm, Earth Observat Agroecosyst Team, CH-8046 Zurich, Switzerland
[5] European Space Agcy, I-00044 Frascati, Italy
关键词
Uncertainty; Reflectivity; Land surface; Atmospheric modeling; Correlation; Ocean temperature; Mathematical models; Copernicus; Level-2A; spectral error correlation; surface reflectance; uncertainty; RADIATIVE-TRANSFER CALCULATIONS; LIBRADTRAN SOFTWARE PACKAGE; ATMOSPHERIC CORRECTION; SOLSPEC SPECTROMETER; REFLECTANCE; IRRADIANCE; RETRIEVAL; ATLAS; NM;
D O I
10.1109/TGRS.2024.3435021
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The Copernicus Sentinel-2 (S2) satellite mission acquires high spatial resolution optical imagery over land and coastal areas. Delivering uncertainty estimates and spectral error correlation alongside S2 data products facilitates the constrain of retrieval algorithms, propagates further downstream the retrieval uncertainty, and, finally, makes informed decisions to end-users. This study presents a framework to produce uncertainty estimates and spectral error correlation associated with the S2 L2A data products (i.e., surface reflectance). This framework has been implemented in a prototype code available at https://doi.org/10.5281/zenodo.11971517. The uncertainty considers both the Level-1 (L1) uncertainty estimates for the top-of-atmosphere (TOA) reflectance factor and the atmospheric correction. The L2A error distribution cannot be systematically described as a normal distribution; the transformation can be nonlinear and without an explicit mathematical model. Thus, a multivariate Monte Carlo model (MCM) rather than the law of propagation of uncertainty (LPU) is selected for uncertainty propagation. We show results for surface reflectance uncertainty over the Amazon forest and Libya4 desert site. It illustrates the large uncertainty and spectral error correlation variations depending on the scene. The comparison of a multivariate MCM against an LPU propagation methodology indicates the limitations of the latter for scenes dominated by the atmospheric path. Its implementation as an operational per-pixel processing and dissemination of both the uncertainty and spectral error correlation becomes challenging. Therefore, this methodology is not expected to run at an operational level but serves as the basis to define a strategy for an operational one.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] ASSESSMENT OF THE GEOMETRIC QUALITY OF SENTINEL-2 DATA
    Pandzic, M.
    Mihajlovic, D.
    Pandzic, J.
    Pfeifer, N.
    XXIII ISPRS CONGRESS, COMMISSION I, 2016, 41 (B1): : 489 - 494
  • [32] Multitemporal Sentinel-2 data - remarks and observations
    Kukawska, Ewa
    Lewinski, Stanislaw
    Krupinski, Michal
    Malinowski, Radoslaw
    Nowakowski, Artur
    Rybicki, Marcin
    Kotarba, Andrzej
    2017 9TH INTERNATIONAL WORKSHOP ON THE ANALYSIS OF MULTITEMPORAL REMOTE SENSING IMAGES (MULTITEMP), 2017,
  • [33] Monitoring Mangroves Using Sentinel-2 data
    Jadav, Ravindra
    Gogoi, Priti Rekha
    Hans, Aradhana Lucky
    Selvam, N. Thamizh
    Deobhanj, Sanghamitra
    Chetia, Monisha
    Unni, Anjana
    CURRENT SCIENCE, 2020, 118 (06): : 859 - 859
  • [34] Synthetic Data for Sentinel-2 Semantic Segmentation
    Clabaut, Etienne
    Foucher, Samuel
    Bouroubi, Yacine
    Germain, Mickael
    REMOTE SENSING, 2024, 16 (05)
  • [35] Intercomparison between sentinel-1, sentinel-2, and landsat-8 on reservoir water level estimation
    Sathianarayanan, Manikandan
    Saraswat, Ajay
    Athick, A. S. Mohammed Abdul
    Lin, Hung-Ming
    SUSTAINABLE WATER RESOURCES MANAGEMENT, 2023, 9 (06)
  • [36] Intercomparison between sentinel-1, sentinel-2, and landsat-8 on reservoir water level estimation
    Manikandan Sathianarayanan
    Ajay Saraswat
    A. S. Mohammed Abdul Athick
    Hung-Ming Lin
    Sustainable Water Resources Management, 2023, 9
  • [37] OPTIMIZATION OF SPECTRAL INDICES FOR THE ESTIMATION OF LEAF AREA INDEX BASED ON SENTINEL-2 MULTISPECTRAL IMAGERY
    Wang, Zihao
    Sun, Yuanheng
    Zhang, Tianyuan
    Ren, Huazhong
    Qin, Qiming
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 5441 - 5444
  • [38] Need and vision for global medium-resolution Landsat and Sentinel-2 data products
    Radeloff, Volker C.
    Roy, David P.
    Wulder, Michael A.
    Anderson, Martha
    Cook, Bruce
    Crawford, Christopher J.
    Friedl, Mark
    Gao, Feng
    Gorelick, Noel
    Hansen, Matthew
    Healey, Sean
    Hostert, Patrick
    Hulley, Glynn
    Huntington, Justin L.
    Johnson, David M.
    Neigh, Chris
    Lyapustin, Alexei
    Lymburner, Leo
    Pahlevan, Nima
    Pekel, Jean -Francois
    Scambos, Theodore A.
    Schaaf, Crystal
    Strobl, Peter
    Woodcock, Curtis E.
    Zhang, Hankui K.
    Zhu, Zhe
    REMOTE SENSING OF ENVIRONMENT, 2024, 300
  • [39] Evaluation of Several Spectral Indices for Estimation of Canola Yield using Sentinel-2 Sensor Images
    Loveimi, N.
    Akram, A.
    Bagheri, N.
    Hajiahmad, A.
    JOURNAL OF AGRICULTURAL MACHINERY, 2021, 11 (02) : 447 - 464
  • [40] Barley Yield Estimation with Sentinel-2 Vegetation Indices
    Demirpolat, Caner
    Leloglu, Ugur Murat
    2018 26TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2018,