A Framework for the Estimation of Uncertainties and Spectral Error Correlation in Sentinel-2 Level-2A Data Products

被引:0
|
作者
Gorrono, Javier [1 ]
Guanter, Luis [1 ,2 ]
Graf, Lukas Valentin [3 ,4 ]
Gascon, Ferran [5 ]
机构
[1] Univ Politecn Valencia, Res Inst Water & Environm Engn, Valencia 46022, Spain
[2] Environm Def Fund, NL-1017 LN Amsterdam, Netherlands
[3] Swiss Fed Inst Technol, Inst Agr Sci, Crop Sci Grp, CH-8092 Zurich, Switzerland
[4] Agroscope, Div Agroecol & Environm, Earth Observat Agroecosyst Team, CH-8046 Zurich, Switzerland
[5] European Space Agcy, I-00044 Frascati, Italy
关键词
Uncertainty; Reflectivity; Land surface; Atmospheric modeling; Correlation; Ocean temperature; Mathematical models; Copernicus; Level-2A; spectral error correlation; surface reflectance; uncertainty; RADIATIVE-TRANSFER CALCULATIONS; LIBRADTRAN SOFTWARE PACKAGE; ATMOSPHERIC CORRECTION; SOLSPEC SPECTROMETER; REFLECTANCE; IRRADIANCE; RETRIEVAL; ATLAS; NM;
D O I
10.1109/TGRS.2024.3435021
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The Copernicus Sentinel-2 (S2) satellite mission acquires high spatial resolution optical imagery over land and coastal areas. Delivering uncertainty estimates and spectral error correlation alongside S2 data products facilitates the constrain of retrieval algorithms, propagates further downstream the retrieval uncertainty, and, finally, makes informed decisions to end-users. This study presents a framework to produce uncertainty estimates and spectral error correlation associated with the S2 L2A data products (i.e., surface reflectance). This framework has been implemented in a prototype code available at https://doi.org/10.5281/zenodo.11971517. The uncertainty considers both the Level-1 (L1) uncertainty estimates for the top-of-atmosphere (TOA) reflectance factor and the atmospheric correction. The L2A error distribution cannot be systematically described as a normal distribution; the transformation can be nonlinear and without an explicit mathematical model. Thus, a multivariate Monte Carlo model (MCM) rather than the law of propagation of uncertainty (LPU) is selected for uncertainty propagation. We show results for surface reflectance uncertainty over the Amazon forest and Libya4 desert site. It illustrates the large uncertainty and spectral error correlation variations depending on the scene. The comparison of a multivariate MCM against an LPU propagation methodology indicates the limitations of the latter for scenes dominated by the atmospheric path. Its implementation as an operational per-pixel processing and dissemination of both the uncertainty and spectral error correlation becomes challenging. Therefore, this methodology is not expected to run at an operational level but serves as the basis to define a strategy for an operational one.
引用
收藏
页数:13
相关论文
共 50 条
  • [11] Field-level crop yield estimation with PRISMA and Sentinel-2
    Marshall, Michael
    Belgiu, Mariana
    Boschetti, Mirco
    Pepe, Monica
    Stein, Alfred
    Nelson, Andy
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2022, 187 : 191 - 210
  • [12] Estimation of winter wheat residue cover using spectral and textural information from Sentinel-2 data
    Cai W.
    Zhao S.
    Wang Y.
    Peng F.
    Zhao, Shuhe (zhaosh@nju.edu.cn), 1600, Science Press (24): : 1108 - 1119
  • [13] Evaluating the capabilities of vegetation spectral indices on chlorophyll content estimation at Sentinel-2 spectral resolutions
    Sun, Qi
    Jiao, Quanjun
    Dai, Huayang
    MIPPR 2017: REMOTE SENSING IMAGE PROCESSING, GEOGRAPHIC INFORMATION SYSTEMS, AND OTHER APPLICATIONS, 2018, 10611
  • [14] ESTIMATION OF SURFACE SNOW WETNESS USING SENTINEL-2 MULTISPECTRAL DATA
    Varade, Divyesh
    Dikshit, Onkar
    ISPRS TC V MID-TERM SYMPOSIUM GEOSPATIAL TECHNOLOGY - PIXEL TO PEOPLE, 2018, 4-5 : 223 - 228
  • [15] Alfalfa yield estimation using the combination of Sentinel-2 and meteorological data
    Gamez, Angie L.
    Segarra, Joel
    Vatter, Thomas
    Santesteban, Luis G.
    Araus, Jose L.
    Aranjuelo, Iker
    FIELD CROPS RESEARCH, 2025, 326
  • [16] LEAF CHLOROPHYLL CONTENT ESTIMATION FROM SENTINEL-2 MSI DATA
    Ma, Qingmiao
    Chen, Jing M.
    Li, Yingjie
    Croft, Holly
    Luo, Xiangzhong
    Zheng, Ting
    Zamaria, Sophia
    2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, : 2915 - 2918
  • [17] Best practices for the reprojection and resampling of Sentinel-2 Multi Spectral Instrument Level 1C data
    Roy, David P.
    Li, Jian
    Zhang, Hankui K.
    Yan, Lin
    REMOTE SENSING LETTERS, 2016, 7 (11) : 1023 - 1032
  • [18] Assessment of Sentinel-2 Vegetation Indices for Plot Level Tree AGB Estimation
    Alam, Mehboob
    Zafar, Shahzad
    Muhammad, Waqas
    2017 FIFTH INTERNATIONAL CONFERENCE ON AEROSPACE SCIENCE & ENGINEERING (ICASE), 2017,
  • [19] FOREST ABOVEGROUND BIOMASS ESTIMATION USING A COMBINATION OF SENTINEL-1 AND SENTINEL-2 DATA
    Hoscilo, Agata
    Lewandowska, Aneta
    Ziolkowski, Dariusz
    Sterenczak, Krzysztof
    Lisanczuk, Marek
    Schmullius, Christiane
    Pathe, Carsten
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 9026 - 9029
  • [20] Estimation of the Water Level in the Ili River from Sentinel-2 Optical Data Using Ensemble Machine Learning
    Mukhamediev, Ravil I.
    Terekhov, Alexey
    Sagatdinova, Gulshat
    Amirgaliyev, Yedilkhan
    Gopejenko, Viktors
    Abayev, Nurlan
    Kuchin, Yan
    Popova, Yelena
    Symagulov, Adilkhan
    REMOTE SENSING, 2023, 15 (23)