A Framework for the Estimation of Uncertainties and Spectral Error Correlation in Sentinel-2 Level-2A Data Products

被引:0
|
作者
Gorrono, Javier [1 ]
Guanter, Luis [1 ,2 ]
Graf, Lukas Valentin [3 ,4 ]
Gascon, Ferran [5 ]
机构
[1] Univ Politecn Valencia, Res Inst Water & Environm Engn, Valencia 46022, Spain
[2] Environm Def Fund, NL-1017 LN Amsterdam, Netherlands
[3] Swiss Fed Inst Technol, Inst Agr Sci, Crop Sci Grp, CH-8092 Zurich, Switzerland
[4] Agroscope, Div Agroecol & Environm, Earth Observat Agroecosyst Team, CH-8046 Zurich, Switzerland
[5] European Space Agcy, I-00044 Frascati, Italy
关键词
Uncertainty; Reflectivity; Land surface; Atmospheric modeling; Correlation; Ocean temperature; Mathematical models; Copernicus; Level-2A; spectral error correlation; surface reflectance; uncertainty; RADIATIVE-TRANSFER CALCULATIONS; LIBRADTRAN SOFTWARE PACKAGE; ATMOSPHERIC CORRECTION; SOLSPEC SPECTROMETER; REFLECTANCE; IRRADIANCE; RETRIEVAL; ATLAS; NM;
D O I
10.1109/TGRS.2024.3435021
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The Copernicus Sentinel-2 (S2) satellite mission acquires high spatial resolution optical imagery over land and coastal areas. Delivering uncertainty estimates and spectral error correlation alongside S2 data products facilitates the constrain of retrieval algorithms, propagates further downstream the retrieval uncertainty, and, finally, makes informed decisions to end-users. This study presents a framework to produce uncertainty estimates and spectral error correlation associated with the S2 L2A data products (i.e., surface reflectance). This framework has been implemented in a prototype code available at https://doi.org/10.5281/zenodo.11971517. The uncertainty considers both the Level-1 (L1) uncertainty estimates for the top-of-atmosphere (TOA) reflectance factor and the atmospheric correction. The L2A error distribution cannot be systematically described as a normal distribution; the transformation can be nonlinear and without an explicit mathematical model. Thus, a multivariate Monte Carlo model (MCM) rather than the law of propagation of uncertainty (LPU) is selected for uncertainty propagation. We show results for surface reflectance uncertainty over the Amazon forest and Libya4 desert site. It illustrates the large uncertainty and spectral error correlation variations depending on the scene. The comparison of a multivariate MCM against an LPU propagation methodology indicates the limitations of the latter for scenes dominated by the atmospheric path. Its implementation as an operational per-pixel processing and dissemination of both the uncertainty and spectral error correlation becomes challenging. Therefore, this methodology is not expected to run at an operational level but serves as the basis to define a strategy for an operational one.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Canopy chlorophyll content and LAI estimation from Sentinel-2: vegetation indices and Sentinel-2 Level-2A automatic products comparison
    Pasqualotto, Nieves
    Bolognesi, Salvatore Falanga
    Belfiore, Oscar Rosario
    Delegido, Jesus
    D'Urso, Guido
    Moreno, Jose
    2019 IEEE INTERNATIONAL WORKSHOP ON METROLOGY FOR AGRICULTURE AND FORESTRY (METROAGRIFOR), 2019, : 301 - 306
  • [2] SENTINEL-2 GLOBAL SURFACE REFLECTANCE LEVEL-2A PRODUCT GENERATED WITH SEN2COR
    Louis, Jerome
    Pflug, Bringfried
    Main-Knorn, Magdalena
    Debaecker, Vincent
    Mueller-Wilm, Uwe
    Iannone, Rosario Quirino
    Cadau, Enrico Giuseppe
    Boccia, Valentina
    Gascon, Ferran
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 8522 - 8525
  • [3] Application of Sentinel-2 Level-2A images for monitoring water surface in reservoirs in the semiarid region of Pernambuco-Brazil
    de Souza, Jonas Felipe Santos
    Neto, Alfredo Ribeiro
    Pena-Luque, Santiago
    Gosset, Marielle
    REVISTA BRASILEIRA DE CIENCIAS AMBIENTAIS, 2024, 59
  • [4] SENTINEL-2 LEVEL 1 PRODUCTS AND IMAGE PROCESSING PERFORMANCES
    Baillarin, S. J.
    Meygret, A.
    Dechoz, C.
    Petrucci, B.
    Lacherade, S.
    Tremas, T.
    Isola, C.
    Martimort, P.
    Spoto, F.
    2012 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2012, : 7003 - 7006
  • [5] SENTINEL-2 LEVEL 1 PRODUCTS AND IMAGE PROCESSING PERFORMANCES
    Baillarin, S. J.
    Meygret, A.
    Dechoz, C.
    Petrucci, B.
    Lacherade, S.
    Tremas, T.
    Isola, C.
    Martimort, P.
    Spoto, F.
    XXII ISPRS CONGRESS, TECHNICAL COMMISSION I, 2012, 39-B1 : 197 - 202
  • [6] EVALUATION OF SENTINEL-2/MSI IMAGERY PRODUCTS LEVEL-2A OBTAINED BY THREE DIFFERENT ATMOSPHERIC CORRECTIONS FOR MONITORING SUSPENDED SEDIMENTS CONCENTRATION IN MADEIRA RIVER, BRAZIL
    Santos, D. R. A.
    Martinez, J. M.
    Harmel, Tristan
    Borges, H. D.
    Roig, H.
    2020 IEEE LATIN AMERICAN GRSS & ISPRS REMOTE SENSING CONFERENCE (LAGIRS), 2020, : 207 - 212
  • [7] Generative Framework Approach to Match Landsat and Sentinel-2 Data
    Roy, Sujit
    Sridhar, Madhu
    Mandel, John
    Freitag, Brian
    Ju, Junchang
    Ramachandran, Rahul
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 5101 - 5104
  • [8] Estimation of Rubber Yield Using Sentinel-2 Satellite Data
    Bhumiphan, Niwat
    Nontapon, Jurawan
    Kaewplang, Siwa
    Srihanu, Neti
    Koedsin, Werapong
    Huete, Alfredo
    SUSTAINABILITY, 2023, 15 (09)
  • [9] Monitoring rice crop and yield estimation with Sentinel-2 data
    Soriano-Gonzalez, Jesus
    Angelats, Eduard
    Martinez-Eixarch, Maite
    Alcaraz, Carles
    FIELD CROPS RESEARCH, 2022, 281
  • [10] Augmenting Landsat time series with Harmonized Landsat Sentinel-2 data products: Assessment of spectral correspondence
    Wulder, Michael A.
    Hermosilla, Txomin
    White, Joanne C.
    Hobart, Geordie
    Masek, Jeffrey G.
    SCIENCE OF REMOTE SENSING, 2021, 4