1-Octanol-assisted ultra-small volume droplet microfluidics with nanoelectrospray ionization mass spectrometry

被引:1
|
作者
Zhao, Yaoyao [1 ,2 ,7 ]
Park, Insu [3 ]
Rubakhin, Stanislav S. [1 ,2 ]
Bashir, Rashid [4 ,5 ,6 ]
Vlasov, Yurii [4 ,5 ,6 ]
Sweedler, Jonathan V. [1 ,2 ,6 ]
机构
[1] Univ Illinois, Dept Chem, Urbana, IL 61801 USA
[2] Univ Illinois, Beckman Inst Adv Sci & Technol, Urbana, IL 61801 USA
[3] Univ Illinois, Holonyak Micro & Nanotechnol Lab, Urbana, IL 61801 USA
[4] Univ Illinois, Beckman Inst Adv Sci & Technol, Holonyak Micro & Nanotechnol Lab, Urbana, IL 61801 USA
[5] Univ Illinois, Dept Elect & Comp Engn, Urbana, IL 61801 USA
[6] Univ Illinois, Dept Bioengn, Urbana, IL 61801 USA
[7] Beijing Univ Technol, Dept Chem, Beijing 100124, Peoples R China
基金
美国国家卫生研究院;
关键词
Cerebral spinal fluid; Neurotransmitters; Low volume sampling; Droplet microfluidics; Mass spectrometry; CEREBROSPINAL-FLUID; PICOLITER DROPLETS; NANOLITER-SCALE; SEGMENTED FLOW; PLATFORM; ACETYLCHOLINE; CAPILLARY; ARRAY;
D O I
10.1016/j.aca.2024.342998
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Background: Droplet microfluidics with push-pull and microdialysis sampling from brain slices, cultured cells and engineered tissues produce low volume mass limited samples containing analytes sampled from the extracellular space. This sampling approach coupled to mass spectrometry (MS) detection allows evaluation of time- dependent chemical changes. Our goal is an approach for continuous sampling and segregation of extracellular samples into picoliter droplets followed by the characterization of the droplets using nanoelectrospray ionization (nESI) MS. The main focus here is the optimization of the carrier oil for the microfluidic device that neither affects the stability of picoliter droplets nor compatibility with MS detection of a range of analytes. Results: We developed and characterized a 1-octanol-assisted ultra-small volume droplet microfluidic nESI MS system for the analysis of neurotransmitters in distinct samples including cerebrospinal fluid (CSF). The use of a 1-octanol oil phase was effective for generation of aqueous droplets as small as 65 pL and enabled detection of acetylcholine (ACh) and gamma-aminobutyric acid (GABA) in water and artificial CSF. Continuous MS analysis of droplets for extended periods up to 220 min validated the long-term stability of droplet generation and analyte detection by nESI-MS. As an example, ACh response demonstrated a linear working range (R2 2 = 0.99) between 0.4 mu M and 25 mu M with a limit of detection of 370 nM (24 amol), enabling its quantitation in rodent CSF. Significance: The established droplet microfluidics - nESI MS approach allows the analysis of microenvironments at high spatiotemporal resolution. The approach may allow microsampling and monitoring of spatiotemporal dynamics of neurochemicals and drugs in the brain and spinal cord of live animals.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Mass Spectrometry of ultra-small gold nanoparticles
    Hewitt, Michael
    Johnson, Grant
    Hernandez, Heriberto
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257
  • [2] Dried Blood Spot Analysis by Digital Microfluidics Coupled to Nanoelectrospray Ionization Mass Spectrometry
    Shih, Steve C. C.
    Yang, Hao
    Jebrail, Mais J.
    Fobel, Ryan
    McIntosh, Nathan
    Al-Dirbashi, Osama Y.
    Chakraborty, Pranesh
    Wheeler, Aaron R.
    ANALYTICAL CHEMISTRY, 2012, 84 (08) : 3731 - 3738
  • [3] Membrane-Based Emitter for Coupling Microfluidics with Ultrasensitive Nanoelectrospray Ionization-Mass Spectrometry
    Sun, Xuefei
    Kelly, Ryan T.
    Tang, Keqi
    Smith, Richard D.
    ANALYTICAL CHEMISTRY, 2011, 83 (14) : 5797 - 5803
  • [4] Solid probe assisted nanoelectrospray ionization mass spectrometry for biological tissue diagnostics
    Mandal, Mridul Kanti
    Yoshimura, Kentaro
    Saha, Subhrakanti
    Ninomiya, Satoshi
    Rahman, Md. Obaidur
    Yu, Zhan
    Chen, Lee Chuin
    Shida, Yasuo
    Takeda, Sen
    Nonami, Hiroshi
    Hiraoka, Kenzo
    ANALYST, 2012, 137 (20) : 4658 - 4661
  • [5] High-Throughput Nanoelectrospray Ionization-Mass Spectrometry Analysis of Microfluidic Droplet Samples
    Steyer, Daniel J.
    Kennedy, Robert T.
    ANALYTICAL CHEMISTRY, 2019, 91 (10) : 6645 - 6651
  • [6] Accelerator mass spectrometry of ultra-small samples with applications in the biosciences
    Salehpour, Mehran
    Hakansson, Karl
    Possnert, Goran
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2013, 294 : 97 - 103
  • [7] Untreated and dried sample analysis by solid probe assisted nanoelectrospray ionization mass spectrometry
    Mandal, Mridul Kanti
    Saha, Subhrakanti
    Yu, Zhan
    Yoshimura, Kentaro
    Takeda, Sen
    Hiraoka, Kenzo
    ANALYTICAL METHODS, 2015, 7 (06) : 2630 - 2635
  • [8] Matrix-assisted nanoelectrospray mass spectrometry for soft ionization of metal(I)-protein complexes
    Li, Jin
    Zheng, Yajun
    Zhao, Jia
    Austin, Daniel E.
    Zhang, Zhiping
    ANALYST, 2020, 145 (05) : 1646 - 1656
  • [9] On-Chip Spyhole Nanoelectrospray Ionization Mass Spectrometry for Sensitive Biomarker Detection in Small Volumes
    Zhong, Xiaoqin
    Qiao, Liang
    Stauffer, Geraldine
    Liu, Baohong
    Girault, Hubert H.
    JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY, 2018, 29 (07) : 1538 - 1545
  • [10] Screening Clones for Monoclonal Antibody Production Using Droplet Microfluidics Interfaced to Electrospray Ionization Mass Spectrometry
    D'Amico, Cara I.
    Robbins, Gillian
    Po, Iris
    Fang, Zhichao
    Slaney, Thomas R.
    Tremml, Gabi
    Tao, Li
    Ruotolo, Brandon T.
    Kennedy, Robert T.
    JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY, 2023, 34 (06) : 1117 - 1124