PARA-SASAKIAN MANIFOLD ADMITTING RICCI-YAMABE SOLITONS WITH QUARTER SYMMETRIC METRIC CONNECTION

被引:0
|
作者
Vandana [1 ]
Budhiraja, Rajeev [1 ]
Ahmad, Kamran [2 ]
Siddiqui, Aliya Naaz [2 ]
机构
[1] Maharishi Markandeshwar Deemed Univ, Dept Math & Humanities, Ambala 133207, Haryana, India
[2] Galgotias Univ, Sch Basic Sci, Div Math, Greater Noida 203201, Uttar Pradesh, India
关键词
Ricci-Yamabe soliton; Para-Sasakian manifold; Quasi-Einstein manifold;
D O I
10.22190/FUMI230825034V
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the year 2019, Guler and Crasmareanu [6] conducted an investigation into another geometric flow known as the Ricci-Yamabe map. This map is nothing but a scalar combination of the Ricci and the Yamabe flow [7]. The primary objective of the current paper is to provide a characterization of a Ricci Yamabe soliton on a para-Sasakian manifold [17]. To commence, we prove that a para-Sasakian manifold admits a nearly quasi-Einstein manifold. Moreover, we discuss whether such a manifold is shrinking, expanding, or steady. Subsequently, we generalize these findings to RicciYamabe solitons on para-Sasakian manifolds equipped with a quarter symmetric metric connection. Lastly, we furnish an illustration of a three-dimensional para-Sasakian manifold admitting a Ricci-Yamabe soliton which satisfies our results.
引用
收藏
页码:493 / 505
页数:13
相关论文
共 50 条
  • [21] Almost Pseudo Symmetric Kahler Manifolds Admitting Conformal Ricci-Yamabe Metric
    Yadav, Sunil Kumar
    Haseeb, Abdul
    Jamal, Nargis
    [J]. INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2023, 21
  • [22] η-Ricci Solitons on Lorentzian Para-Sasakian Manifolds
    Blaga, Adara M.
    [J]. FILOMAT, 2016, 30 (02) : 489 - 496
  • [23] CR-SUBMANIFOLDS OF A LORENTZIAN PARA-SASAKIAN MANIFOLD WITH A SEMI-SYMMETRIC METRIC CONNECTION
    Ozgur, Cihan
    Ahmad, Mobin
    Haseeb, Abdul
    [J]. HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2010, 39 (04): : 489 - 496
  • [24] SASAKIAN 3-MANIFOLDS ADMITTING A GRADIENT RICCI-YAMABE SOLITON
    Dey, Dibakar
    [J]. KOREAN JOURNAL OF MATHEMATICS, 2021, 29 (03): : 547 - 554
  • [25] Ricci-Yamabe solitons on a class of generalized Sasakian space forms
    Sardar, Arpan
    Sarkar, Avijit
    [J]. ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2022, 15 (09)
  • [26] ALMOST HERMITE MANIFOLD ADMITTING RICCI QUARTER SYMMETRIC CONNECTION
    Goel, Nayan
    Srivastava, Sudhir Kumar
    Srivastava, Sunil Kumar
    [J]. JOURNAL OF RAJASTHAN ACADEMY OF PHYSICAL SCIENCES, 2023, 22 (1-2): : 41 - 51
  • [27] The existence of weakly symmetric and weakly Ricci-symmetric Sasakian manifolds admitting a quarter-symmetric metric connection
    Jaiswal, J. P.
    [J]. ACTA MATHEMATICA HUNGARICA, 2011, 132 (04) : 358 - 366
  • [28] The existence of weakly symmetric and weakly Ricci-symmetric Sasakian manifolds admitting a quarter-symmetric metric connection
    Jai Prakash Jaiswal
    [J]. Acta Mathematica Hungarica, 2011, 132 : 358 - 366
  • [29] YAMABE AND RIEMANN SOLITONS ON LORENTZIAN PARA-SASAKIAN MANIFOLDS
    Chidananda, Shruthi
    Venkatesha, Venkatesha
    [J]. COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2022, 37 (01): : 213 - 228
  • [30] The Geometry of δ-Ricci-Yamabe Almost Solitons on Para- contact Metric Manifolds
    Mondal, Somnath
    Dey, Santu
    Suh, Young jin
    Bhattacharyya, Arindam
    [J]. KYUNGPOOK MATHEMATICAL JOURNAL, 2023, 63 (04): : 623 - 638