ALMOST HERMITE MANIFOLD ADMITTING RICCI QUARTER SYMMETRIC CONNECTION

被引:0
|
作者
Goel, Nayan [1 ]
Srivastava, Sudhir Kumar [1 ]
Srivastava, Sunil Kumar [2 ]
机构
[1] Deen Dayal Upadhyaya Gorakhpur Univ, Gorakhpur, India
[2] Jaipur Engn Coll & Res Ctr, Jaipur, Rajasthan, India
来源
关键词
Ricci quarter symmetric connection; Almost Hermitian manifold; Covariant almost analytic vector field; Contravariant almost analytic vector field;
D O I
暂无
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In the present paper we obtained certain results on an almost Hermite manifold admitting a Ricci quarter symmetric connection. Necessary and sufficient conditions for existence of covariant almost analytic vector field has been discussed. The properties of contravariant almost analytic vector field and almost Hermitian manifold are also the part of the study.
引用
收藏
页码:41 / 51
页数:11
相关论文
共 50 条
  • [1] SUBMANIFOLDS OF A RIEMANNIAN MANIFOLD ADMITTING A TYPE OF RICCI QUARTER-SYMMETRIC METRIC CONNECTION
    Mondal, Abul Kalam
    [J]. FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2018, 33 (04): : 577 - 586
  • [2] On the existence of an almost generalized weakly-symmetric Sasakian manifold admitting quarter symmetric metric connection
    Baishya, Kanak Kanti
    Nurcan, Fusun
    Jana, Sanjib Kumar
    [J]. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE, 2019, 13 (01): : 941 - 946
  • [3] ALMOST PSEUDO RICCI SYMMETRIC MANIFOLD ADMITTING SCHOUTEN TENSOR
    Ali, Mohabbat
    Vasiulla, Mohd
    [J]. JOURNAL OF DYNAMICAL SYSTEMS AND GEOMETRIC THEORIES, 2021, 19 (02) : 217 - 225
  • [4] Weyl Manifold with a Ricci Quarter-Symmetric Connection
    Canfes, E. O.
    Gul, I.
    [J]. IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2016, 40 (A3): : 171 - 175
  • [5] Weyl Manifold with a Ricci Quarter-Symmetric Connection
    E. O. Canfes
    I. Gul
    [J]. Iranian Journal of Science and Technology, Transactions A: Science, 2016, 40 : 171 - 175
  • [6] PARA-SASAKIAN MANIFOLD ADMITTING RICCI-YAMABE SOLITONS WITH QUARTER SYMMETRIC METRIC CONNECTION
    Vandana
    Budhiraja, Rajeev
    Ahmad, Kamran
    Siddiqui, Aliya Naaz
    [J]. FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2024, 39 (03): : 493 - 505
  • [7] On Submanifolds of an Almost Contact Metric Manifold Admitting a Quarter-Symmetric Non-Metric Connection
    He, Guoqing
    Zhao, Peibiao
    [J]. FILOMAT, 2019, 33 (17) : 5463 - 5475
  • [8] On a Ricci Quarter-Symmetric Metric Recurrent Connection and a Projective Ricci Quarter-Symmetric Metric Recurrent Connection in a Riemannian Manifold
    Zhao, Di
    Jen, Cholyong
    Ho, Talyun
    [J]. FILOMAT, 2020, 34 (03) : 795 - 806
  • [9] Quarter-symmetric connection on an almost Hermitian manifold and on a Kähler manifold
    Zlatanovic, Milan Lj.
    Maksimovic, Miroslav D.
    [J]. HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2024, 53 (04): : 963 - 980
  • [10] Results on para-Sasakian manifold admitting a quarter symmetric metric connection
    Vishnuvardhana, S. V.
    Venkatesha
    [J]. CUBO-A MATHEMATICAL JOURNAL, 2020, 22 (02): : 257 - 271