PARA-SASAKIAN MANIFOLD ADMITTING RICCI-YAMABE SOLITONS WITH QUARTER SYMMETRIC METRIC CONNECTION

被引:0
|
作者
Vandana [1 ]
Budhiraja, Rajeev [1 ]
Ahmad, Kamran [2 ]
Siddiqui, Aliya Naaz [2 ]
机构
[1] Maharishi Markandeshwar Deemed Univ, Dept Math & Humanities, Ambala 133207, Haryana, India
[2] Galgotias Univ, Sch Basic Sci, Div Math, Greater Noida 203201, Uttar Pradesh, India
关键词
Ricci-Yamabe soliton; Para-Sasakian manifold; Quasi-Einstein manifold;
D O I
10.22190/FUMI230825034V
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the year 2019, Guler and Crasmareanu [6] conducted an investigation into another geometric flow known as the Ricci-Yamabe map. This map is nothing but a scalar combination of the Ricci and the Yamabe flow [7]. The primary objective of the current paper is to provide a characterization of a Ricci Yamabe soliton on a para-Sasakian manifold [17]. To commence, we prove that a para-Sasakian manifold admits a nearly quasi-Einstein manifold. Moreover, we discuss whether such a manifold is shrinking, expanding, or steady. Subsequently, we generalize these findings to RicciYamabe solitons on para-Sasakian manifolds equipped with a quarter symmetric metric connection. Lastly, we furnish an illustration of a three-dimensional para-Sasakian manifold admitting a Ricci-Yamabe soliton which satisfies our results.
引用
收藏
页码:493 / 505
页数:13
相关论文
共 50 条
  • [1] Results on para-Sasakian manifold admitting a quarter symmetric metric connection
    Vishnuvardhana, S. V.
    Venkatesha
    [J]. CUBO-A MATHEMATICAL JOURNAL, 2020, 22 (02): : 257 - 271
  • [2] Conformal η-Ricci solitons in Lorentzian para-Sasakian manifold admitting semi-symmetric metric connection
    Somashekhara, G.
    Babu, S. Girish
    Reddy, P. Siva Kota
    [J]. ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2021, (46): : 1008 - 1019
  • [3] CONFORMAL η-RICCI-YAMABE SOLITONS ON SUBMANIFOLDS OF AN (LCS )n-MANIFOLD ADMITTING A QUARTER-SYMMETRIC METRIC CONNECTION
    Yadav, Sunil Kumar
    Haseeb, Abdul
    Yildiz, Ahmet
    [J]. COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2024, 73 (03): : 611 - 629
  • [4] Geometry of α-Cosymplectic Metric as *-Conformal η-Ricci-Yamabe Solitons Admitting Quarter-Symmetric Metric Connection
    Zhang, Pengfei
    Li, Yanlin
    Roy, Soumendu
    Dey, Santu
    [J]. SYMMETRY-BASEL, 2021, 13 (11):
  • [5] Sasakian Manifolds Admitting *-η-Ricci-Yamabe Solitons
    Haseeb, Abdul
    Prasad, Rajendra
    Mofarreh, Fatemah
    [J]. ADVANCES IN MATHEMATICAL PHYSICS, 2022, 2022
  • [6] On Quarter-Symmetric Metric Connection in a Lorentzian Para-Sasakian Manifold
    Venkatesha
    Kumar, K. T. P.
    Bagewadi, C. S.
    [J]. AZERBAIJAN JOURNAL OF MATHEMATICS, 2015, 5 (01): : 3 - 12
  • [7] Lorentzian para-Sasakian manifold with quarter-symmetric non-metric connection
    Bahadir, Oguzhan
    [J]. JOURNAL OF DYNAMICAL SYSTEMS AND GEOMETRIC THEORIES, 2016, 14 (01) : 17 - 33
  • [8] ON PARA-SASAKIAN MANIFOLDS ADMITTING SEMI-SYMMETRIC METRIC CONNECTION
    Barman, Ajit
    [J]. PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, 2014, 95 (109): : 239 - 247
  • [9] CR-SUBMANIFOLDS OF A LORENTZIAN PARA-SASAKIAN MANIFOLD ENDOWED WITH A QUARTER SYMMETRIC METRIC CONNECTION
    Ahmad, Aobin
    [J]. BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2012, 49 (01) : 25 - 32
  • [10] Lorentzian para-Sasakian Manifolds Admitting a New Type of Quarter-symmetric Non-metric ξ-connection
    Chaubey, Sudhakar K.
    De, Uday Chand
    [J]. INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY, 2019, 12 (02): : 250 - 259