PARA-SASAKIAN MANIFOLD ADMITTING RICCI-YAMABE SOLITONS WITH QUARTER SYMMETRIC METRIC CONNECTION

被引:0
|
作者
Vandana [1 ]
Budhiraja, Rajeev [1 ]
Ahmad, Kamran [2 ]
Siddiqui, Aliya Naaz [2 ]
机构
[1] Maharishi Markandeshwar Deemed Univ, Dept Math & Humanities, Ambala 133207, Haryana, India
[2] Galgotias Univ, Sch Basic Sci, Div Math, Greater Noida 203201, Uttar Pradesh, India
关键词
Ricci-Yamabe soliton; Para-Sasakian manifold; Quasi-Einstein manifold;
D O I
10.22190/FUMI230825034V
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the year 2019, Guler and Crasmareanu [6] conducted an investigation into another geometric flow known as the Ricci-Yamabe map. This map is nothing but a scalar combination of the Ricci and the Yamabe flow [7]. The primary objective of the current paper is to provide a characterization of a Ricci Yamabe soliton on a para-Sasakian manifold [17]. To commence, we prove that a para-Sasakian manifold admits a nearly quasi-Einstein manifold. Moreover, we discuss whether such a manifold is shrinking, expanding, or steady. Subsequently, we generalize these findings to RicciYamabe solitons on para-Sasakian manifolds equipped with a quarter symmetric metric connection. Lastly, we furnish an illustration of a three-dimensional para-Sasakian manifold admitting a Ricci-Yamabe soliton which satisfies our results.
引用
收藏
页码:493 / 505
页数:13
相关论文
共 50 条
  • [31] ?-Ricci Soliton in an Indefinite Trans-Sasakian Manifold Admitting Semi-Symmetric Metric Connection
    Somashekhara, G.
    Babu, S. Girish
    Reddy, P. Siva Kota
    [J]. BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2023, 41
  • [32] Kahlerian Norden spacetime admitting conformal η-Ricci-Yamabe metric
    Yadav, S. K.
    Suthar, D. L.
    [J]. INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2024,
  • [33] Sasakian 3-Metric as a Generalized Ricci-Yamabe soliton
    Dey, Dibakar
    Majhi, Pradip
    [J]. QUAESTIONES MATHEMATICAE, 2022, 45 (03) : 409 - 421
  • [34] CONCIRCULAR CURVATURE TENSOR ON A P-SASAKIAN MANIFOLD ADMITTING A QUARTER-SYMMETRIC METRIC CONNECTION
    Barman, A.
    [J]. KRAGUJEVAC JOURNAL OF MATHEMATICS, 2018, 42 (02): : 275 - 285
  • [35] η-RICCI SOLITONS ON TRANS-SASAKIAN MANIFOLDS WITH QUARTER-SYMMETRIC NON-METRIC CONNECTION
    Bahadir, Oguzhan
    Siddiqi, Mohd Danish
    Akyol, Mehmet Akif
    [J]. HONAM MATHEMATICAL JOURNAL, 2020, 42 (03): : 601 - 620
  • [36] On a Ricci Quarter-Symmetric Metric Recurrent Connection and a Projective Ricci Quarter-Symmetric Metric Recurrent Connection in a Riemannian Manifold
    Zhao, Di
    Jen, Cholyong
    Ho, Talyun
    [J]. FILOMAT, 2020, 34 (03) : 795 - 806
  • [37] η-RICCI SOLITONS ON KENMOTSU MANIFOLD WITH GENERALIZED SYMMETRIC METRIC CONNECTION
    Siddiqi, Mohd Danish
    Bahadir, Oguzhan
    [J]. FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2020, 35 (02): : 295 - 310
  • [38] On a Quarter-Symmetric Metric Connection in an LP-Sasakian Manifold
    Singh, R. N.
    Pandey, Shravan K.
    [J]. THAI JOURNAL OF MATHEMATICS, 2014, 12 (02): : 357 - 371
  • [39] A Note on LP-Kenmotsu Manifolds Admitting Conformal Ricci-Yamabe Solitons
    Ahmad, Mobin
    Gazala, Maha Atif
    Al-Shabrawi, Maha Atif
    [J]. INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2023, 21
  • [40] Geometry of para-Sasakian metric as an almost conformal η-Ricci soliton
    Sarkar, Sumanjit
    Dey, Santu
    Alkhaldi, Ali H.
    Bhattacharyya, Arindam
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2022, 181