Quarter-symmetric connection on an almost Hermitian manifold and on a Kähler manifold

被引:0
|
作者
Zlatanovic, Milan Lj. [1 ]
Maksimovic, Miroslav D. [2 ]
机构
[1] Univ Nis, Fac Sci & Math, Dept Math, Nish, Serbia
[2] Univ Pristina Kosovska Mitrovica, Fac Sci & Math, Dept Math, Kosovska Mitrovica, Serbia
来源
关键词
almost Hermitian manifold; curvature tensors; hybrid tensor; K & auml; hler manifold; quarter-symmetric connection; torsion tensor; METRIC CONNECTIONS;
D O I
10.15672/hujms.1219762
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The paper observes an almost Hermitian manifold as an example of a generalized Riemannian manifold and examines the application of a quarter-symmetric connection on the almost Hermitian manifold. The almost Hermitian manifold with quarter-symmetric connection preserving the generalized Riemannian metric is actually the K & auml;hler manifold. Observing the six linearly independent curvature tensors with respect to the quarter- symmetric connection, we construct tensors that do not depend on the quarter-symmetric connection generator. One of them coincides with the Weyl projective curvature tensor of symmetric metric g. Also, we obtain the relations between the Weyl projective curvature tensor and the holomorphically projective curvature tensor. Moreover, we examine the properties of curvature tensors when some tensors are hybrid.
引用
收藏
页码:963 / 980
页数:18
相关论文
共 50 条
  • [1] ON QUARTER-SYMMETRIC NON -METRIC CONNECTION ON AN ALMOST HERMITIAN MANIFOLD
    Chaubey, S. K.
    Ojha, R. H.
    [J]. BULLETIN OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 2 (02): : 77 - 83
  • [2] TANGENT BUNDLE ENDOWED WITH QUARTER-SYMMETRIC NON-METRIC CONNECTION ON AN ALMOST HERMITIAN MANIFOLD
    Khan, Mohammad Nazrul Islam
    [J]. FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2020, 35 (01): : 167 - 178
  • [3] Weyl Manifold with a Ricci Quarter-Symmetric Connection
    Canfes, E. O.
    Gul, I.
    [J]. IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2016, 40 (A3): : 171 - 175
  • [4] Weyl Manifold with a Ricci Quarter-Symmetric Connection
    E. O. Canfes
    I. Gul
    [J]. Iranian Journal of Science and Technology, Transactions A: Science, 2016, 40 : 171 - 175
  • [5] Quarter-Symmetric Metric Connection on a Cosymplectic Manifold
    Maksimovic, Miroslav D. D.
    Zlatanovic, Milan Lj.
    [J]. MATHEMATICS, 2023, 11 (09)
  • [6] A Study on the φ-Symmetric K-Contact Manifold Admitting Quarter-Symmetric Metric Connection
    Bagewadi, C. S.
    Ingalahalli, Gurupadavva
    [J]. JOURNAL OF MATHEMATICAL PHYSICS ANALYSIS GEOMETRY, 2014, 10 (04) : 399 - 411
  • [7] On a Quarter-Symmetric Metric Connection in an LP-Sasakian Manifold
    Singh, R. N.
    Pandey, Shravan K.
    [J]. THAI JOURNAL OF MATHEMATICS, 2014, 12 (02): : 357 - 371
  • [8] QUARTER-SYMMETRIC METRIC CONNECTION ON TANGENT BUNDLE OF NORDEN MANIFOLD
    Akpinar, Rabia Cakan
    Okyay, Harun Cagatay
    [J]. JOURNAL OF SCIENCE AND ARTS, 2021, (03): : 647 - 658
  • [9] Quarter-symmetric metric connection on a p-Kenmotsu manifold
    Chaube, Bhawana
    Chanyal, S. K.
    [J]. CUBO-A MATHEMATICAL JOURNAL, 2024, 26 (01): : 153 - 166
  • [10] On a Ricci Quarter-Symmetric Metric Recurrent Connection and a Projective Ricci Quarter-Symmetric Metric Recurrent Connection in a Riemannian Manifold
    Zhao, Di
    Jen, Cholyong
    Ho, Talyun
    [J]. FILOMAT, 2020, 34 (03) : 795 - 806