Quarter-symmetric connection on an almost Hermitian manifold and on a Kähler manifold

被引:0
|
作者
Zlatanovic, Milan Lj. [1 ]
Maksimovic, Miroslav D. [2 ]
机构
[1] Univ Nis, Fac Sci & Math, Dept Math, Nish, Serbia
[2] Univ Pristina Kosovska Mitrovica, Fac Sci & Math, Dept Math, Kosovska Mitrovica, Serbia
来源
关键词
almost Hermitian manifold; curvature tensors; hybrid tensor; K & auml; hler manifold; quarter-symmetric connection; torsion tensor; METRIC CONNECTIONS;
D O I
10.15672/hujms.1219762
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The paper observes an almost Hermitian manifold as an example of a generalized Riemannian manifold and examines the application of a quarter-symmetric connection on the almost Hermitian manifold. The almost Hermitian manifold with quarter-symmetric connection preserving the generalized Riemannian metric is actually the K & auml;hler manifold. Observing the six linearly independent curvature tensors with respect to the quarter- symmetric connection, we construct tensors that do not depend on the quarter-symmetric connection generator. One of them coincides with the Weyl projective curvature tensor of symmetric metric g. Also, we obtain the relations between the Weyl projective curvature tensor and the holomorphically projective curvature tensor. Moreover, we examine the properties of curvature tensors when some tensors are hybrid.
引用
收藏
页码:963 / 980
页数:18
相关论文
共 50 条
  • [31] QUARTER - SYMMETRIC METRIC CONNECTION ON A (k, mu) - CONTACT METRIC MANIFOLD
    Shaikh, A. A.
    Jana, Sanjib Kumar
    [J]. COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2006, 55 (01): : 32 - 44
  • [32] Geometric Characteristics of a Manifold With a Symmetric-Type Quarter-Symmetric Projective Conformal Non-metric Connection
    Zhao, Di
    Ho, Talyun
    Kwak, Kumhyok
    Jon, CholYong
    [J]. FILOMAT, 2021, 35 (15) : 5137 - 5147
  • [33] QUARTER-SYMMETRIC METRIC CONNECTION
    RASTOGI, SC
    [J]. DOKLADI NA BOLGARSKATA AKADEMIYA NA NAUKITE, 1978, 31 (07): : 811 - 814
  • [34] CHEN-LIKE INEQUALITIES ON LIGHTLIKE HYPERSURFACE OF A LORENTZIAN PRODUCT MANIFOLD WITH QUARTER-SYMMETRIC NONMETRIC CONNECTION
    Poyraz, Nergiz
    Yasar, Erol
    [J]. KRAGUJEVAC JOURNAL OF MATHEMATICS, 2016, 40 (02): : 146 - 164
  • [35] Geometries and topologies of a manifold with ?-quarter-symmetric projective conformal and mutual connections
    Zhao, Di
    Kwak, Kum-Hyok
    Ho, Tal-Yun
    Jon, Chol-Yong
    [J]. FILOMAT, 2023, 37 (12) : 3915 - 3926
  • [36] On the existence of an almost generalized weakly-symmetric Sasakian manifold admitting quarter symmetric metric connection
    Baishya, Kanak Kanti
    Nurcan, Fusun
    Jana, Sanjib Kumar
    [J]. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE, 2019, 13 (01): : 941 - 946
  • [37] Lift of semi-symmetric non-metric connection on a Kähler manifold
    Khan M.N.I.
    [J]. Afrika Matematika, 2016, 27 (3-4) : 345 - 352
  • [38] HYPERSURFACES OF ALMOST r-PARACONTACT RIEMANNIAN MANIFOLD ENDOWED WITH A QUARTER SYMMETRIC METRIC CONNECTION
    Ahmad, Mobin
    Jun, Jae-Bok
    Haseeb, Abdul
    [J]. BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2009, 46 (03) : 477 - 487
  • [39] STUDY OF A NEW TYPE OF METRIC CONNECTION IN AN ALMOST HERMITIAN MANIFOLD
    Chaturvedi, B. B.
    Pandey, Pankaj
    [J]. FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2015, 30 (02): : 217 - 224
  • [40] On a k-th Gauduchon almost Hermitian manifold
    Kawamura, Masaya
    [J]. COMPLEX MANIFOLDS, 2022, 9 (01): : 65 - 77