Geometries and topologies of a manifold with ?-quarter-symmetric projective conformal and mutual connections

被引:0
|
作者
Zhao, Di [1 ]
Kwak, Kum-Hyok [2 ]
Ho, Tal-Yun [2 ]
Jon, Chol-Yong [2 ]
机构
[1] Univ Shanghai Sci & Technol, Coll Sci, Shanghai 200093, Peoples R China
[2] Kim Il Sung Univ, Fac Math, Pyongyang, North Korea
基金
中国国家自然科学基金;
关键词
-quarter-symmetric projective conformal connection family; symmetric-type ?-quarter-symmetric non-metric con-nection; Schur?s theorem; NONMETRIC CONNECTION;
D O I
10.2298/FIL2312915Z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose a new pi-quarter-symmetric projective conformal connection family and its mutual connection family and study its geometrical properties. We also arrive at the Schur's theorem based on a symmetric-type pi-quarter-symmetric non-metric connection and investigate its geometrical property. This paper will pose a new grid computing method on manifolds, which will be done in our next topic.
引用
收藏
页码:3915 / 3926
页数:12
相关论文
共 49 条
  • [1] Geometric Characteristics of a Manifold With a Symmetric-Type Quarter-Symmetric Projective Conformal Non-metric Connection
    Zhao, Di
    Ho, Talyun
    Kwak, Kumhyok
    Jon, CholYong
    [J]. FILOMAT, 2021, 35 (15) : 5137 - 5147
  • [2] Quarter-symmetric generalized metric connections on a generalized Riemannian manifold
    Zlatanovic, Milan Lj.
    Maksimovic, Miroslav D.
    [J]. FILOMAT, 2023, 37 (12) : 3927 - 3937
  • [3] On a Ricci Quarter-Symmetric Metric Recurrent Connection and a Projective Ricci Quarter-Symmetric Metric Recurrent Connection in a Riemannian Manifold
    Zhao, Di
    Jen, Cholyong
    Ho, Talyun
    [J]. FILOMAT, 2020, 34 (03) : 795 - 806
  • [4] Some Invariants of Quarter-Symmetric Metric Connections Under the Projective Transformation
    Han, Yanling
    Yun, Ho Tal
    Zhao, Peibiao
    [J]. FILOMAT, 2013, 27 (04) : 679 - 691
  • [5] A NOTE ON QUARTER-SYMMETRIC METRIC CONNECTIONS
    RASTOGI, SC
    [J]. INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1987, 18 (12): : 1107 - 1112
  • [6] Weyl Manifold with a Ricci Quarter-Symmetric Connection
    Canfes, E. O.
    Gul, I.
    [J]. IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2016, 40 (A3): : 171 - 175
  • [7] Weyl Manifold with a Ricci Quarter-Symmetric Connection
    E. O. Canfes
    I. Gul
    [J]. Iranian Journal of Science and Technology, Transactions A: Science, 2016, 40 : 171 - 175
  • [8] Quarter-Symmetric Metric Connection on a Cosymplectic Manifold
    Maksimovic, Miroslav D. D.
    Zlatanovic, Milan Lj.
    [J]. MATHEMATICS, 2023, 11 (09)
  • [9] SEMI-SYMMETRIC AND QUARTER-SYMMETRIC LINEAR CONNECTIONS
    GOLAB, S
    [J]. TENSOR, 1975, 29 (03): : 249 - 254
  • [10] Quarter-symmetric connection on an almost Hermitian manifold and on a Kähler manifold
    Zlatanovic, Milan Lj.
    Maksimovic, Miroslav D.
    [J]. HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2024, 53 (04): : 963 - 980