Intuitionistic Fuzzy Interpretation of Quantum Logic Axioms

被引:0
|
作者
Atanassov, Krassimir T. [1 ]
Kacprzyk, Janusz [2 ]
Angelova, Nora A. [3 ]
机构
[1] Bulgarian Acad Sci, Inst Biophys & Biomed Engn, Dept Bioinformat & Math Modelling, Acad G Bonchev Str,Block 105, Sofia 1113, Bulgaria
[2] Polish Acad Sci, Syst Res Inst, 6 Newelska Str, PL-01447 Warsaw, Poland
[3] Sofia Univ, Fac Math & Informat, 5 James Bourchier Blvd, Sofia 1164, Bulgaria
关键词
Axiom; Intuitionistic fuzzy logic; Quantum logic;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In 1936 G. Birkhoff and J. von Neumann introduced the concept of a Quantum Logic. In 2007 M. Pavicic and N. Megill introduced one of the axioms of this logic. The Intuitionistic Fuzzy Logic (IFL) is an extension of L. Zadeh's fuzzy logic. The IFL is used as a tool for the interpretation of quantum logic axioms of Pavicic and Megill. Initially, we use the most popular forms of the IFL-operations implication and negation, and the conjunction and disjunction generated by them. Subsequently, we provide illustrations with use of other IFL-operations for quantum logic axioms interpretation. The advantages of these interpretations and potential directions for further research are discussed, e.g., the possibility of extending the quantum logic axioms in the directions of temporal and modal logics, the possibility for using other types of logical operations, and others.
引用
收藏
页码:343 / 354
页数:12
相关论文
共 50 条
  • [41] (α, β)-Ordered Linear Resolution of Intuitionistic Fuzzy Propositional Logic
    Li, Baihua
    Li, Xiaonan
    Pan, Chang
    Zou, Li
    Xu, Yang
    2015 10TH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS AND KNOWLEDGE ENGINEERING (ISKE), 2015, : 341 - 344
  • [42] Combs method used in an intuitionistic fuzzy logic application
    Ervin, Jon E.
    Alptekin, Sema E.
    APPLICATIONS OF FUZZY SETS THEORY, 2007, 4578 : 306 - +
  • [43] Elements of intuitionistic fuzzy logic. Part I
    Atanassov, K
    Gargov, G
    FUZZY SETS AND SYSTEMS, 1998, 95 (01) : 39 - 52
  • [44] (α, β)-Ordered linear resolution of intuitionistic fuzzy propositional logic
    Zou, Li
    Li, XiaoNan
    Pan, Chang
    Liu, Xin
    INFORMATION SCIENCES, 2017, 414 : 329 - 339
  • [45] Remarks on the conjunctions, disjunctions and implications of the intuitionistic fuzzy logic
    Atanassov, KT
    INTERNATIONAL JOURNAL OF UNCERTAINTY FUZZINESS AND KNOWLEDGE-BASED SYSTEMS, 2001, 9 (01) : 55 - 65
  • [46] Interpretations on Quantum Fuzzy Computing: Intuitionistic Fuzzy Operations x Quantum Operators
    Reiser, Renata
    Lemke, Alexandre
    Avila, Anderson
    Vieira, Julia
    Pilla, Mauricio
    Du Bois, Andre
    ELECTRONIC NOTES IN THEORETICAL COMPUTER SCIENCE, 2016, 324 : 135 - 150
  • [47] Using single axioms to characterize (S,T)-intuitionistic fuzzy rough approximation operators
    Wu, Wei-Zhi
    Shao, Ming-Wen
    Wang, Xia
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2019, 10 (01) : 27 - 42
  • [48] Using single axioms to characterize (S, T)-intuitionistic fuzzy rough approximation operators
    Wei-Zhi Wu
    Ming-Wen Shao
    Xia Wang
    International Journal of Machine Learning and Cybernetics, 2019, 10 : 27 - 42
  • [49] Intuitionistic Fuzzy Logic – Anwendungsoptionen im IT Service ManagementIntuitionistic Fuzzy Logic – Use Cases for IT Service Management
    Roland Schütze
    Hansjörg Fromm
    HMD Praxis der Wirtschaftsinformatik, 2018, 55 (3) : 566 - 580
  • [50] FUZZY-LOGIC FOR SPECTRA INTERPRETATION
    OTTO, M
    ANALYTICA CHIMICA ACTA, 1993, 283 (01) : 500 - 507