Intuitionistic Fuzzy Interpretation of Quantum Logic Axioms

被引:0
|
作者
Atanassov, Krassimir T. [1 ]
Kacprzyk, Janusz [2 ]
Angelova, Nora A. [3 ]
机构
[1] Bulgarian Acad Sci, Inst Biophys & Biomed Engn, Dept Bioinformat & Math Modelling, Acad G Bonchev Str,Block 105, Sofia 1113, Bulgaria
[2] Polish Acad Sci, Syst Res Inst, 6 Newelska Str, PL-01447 Warsaw, Poland
[3] Sofia Univ, Fac Math & Informat, 5 James Bourchier Blvd, Sofia 1164, Bulgaria
关键词
Axiom; Intuitionistic fuzzy logic; Quantum logic;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In 1936 G. Birkhoff and J. von Neumann introduced the concept of a Quantum Logic. In 2007 M. Pavicic and N. Megill introduced one of the axioms of this logic. The Intuitionistic Fuzzy Logic (IFL) is an extension of L. Zadeh's fuzzy logic. The IFL is used as a tool for the interpretation of quantum logic axioms of Pavicic and Megill. Initially, we use the most popular forms of the IFL-operations implication and negation, and the conjunction and disjunction generated by them. Subsequently, we provide illustrations with use of other IFL-operations for quantum logic axioms interpretation. The advantages of these interpretations and potential directions for further research are discussed, e.g., the possibility of extending the quantum logic axioms in the directions of temporal and modal logics, the possibility for using other types of logical operations, and others.
引用
收藏
页码:343 / 354
页数:12
相关论文
共 50 条
  • [21] Traversing and Ranking of Elements of an Intuitionistic Fuzzy Set in the Intuitionistic Fuzzy Interpretation Triangle
    Atanassova, Vassia
    Vardeva, Ivelina
    Sotirova, Evdokia
    Doukovska, Lyubka
    NOVEL DEVELOPMENTS IN UNCERTAINTY REPRESENTATION AND PROCESSING: ADVANCES IN INTUITIONISTIC FUZZY SETS AND GENERALIZED NETS, 2016, 401 : 161 - 174
  • [22] A Property of the Intuitionistic Fuzzy Logic Operators
    Atanassov, K. T.
    Doklady Bolgarskoj Akademija Nauk, 48 (04):
  • [23] AN ALGEBRAIC STRUCTURE FOR INTUITIONISTIC FUZZY LOGIC
    Eslami, E.
    IRANIAN JOURNAL OF FUZZY SYSTEMS, 2012, 9 (06): : 31 - 41
  • [24] Application of the Intuitionistic Fuzzy Logic in Education
    Citil, Mehmet
    COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS, 2019, 10 (01): : 131 - 143
  • [25] New insights on the intuitionistic interpretation of Default Logic
    Cabalar, P
    Lorenzo, D
    ECAI 2004: 16TH EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2004, 110 : 798 - 802
  • [26] Testing concurrent systems: An interpretation of intuitionistic logic
    Jagadeesan, R
    Nadathur, G
    Saraswat, V
    FSTTCS 2005: FOUNDATIONS OF SOFTWARE TECHNOLOGY AND THEORETICAL COMPUTER SCIENCE, PROCEEDINGS, 2005, 3821 : 517 - 528
  • [27] INTERPRETATION THEOREMS FOR INTUITIONISTIC LOGIC . PRELIMINARY REPORT
    GABBAY, D
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 16 (03): : 577 - &
  • [28] A PHILOSOPHICALLY PLAUSIBLE FORMAL INTERPRETATION OF INTUITIONISTIC LOGIC
    GRZEGORCZYK, A
    KONINKLIJKE NEDERLANDSE AKADEMIE VAN WETESCHAPPEN-PROCEEDINGS SERIES A-MATHEMATICAL SCIENCES, 1964, 67 (05): : 596 - +
  • [29] Parallel Postulates and Continuity Axioms: A Mechanized Study in Intuitionistic Logic Using Coq
    Pierre Boutry
    Charly Gries
    Julien Narboux
    Pascal Schreck
    Journal of Automated Reasoning, 2019, 62 : 1 - 68
  • [30] Parallel Postulates and Continuity Axioms: A Mechanized Study in Intuitionistic Logic Using Coq
    Boutry, Pierre
    Gries, Charly
    Narboux, Julien
    Schreck, Pascal
    JOURNAL OF AUTOMATED REASONING, 2019, 62 (01) : 1 - 68