Intuitionistic Fuzzy Interpretation of Quantum Logic Axioms

被引:0
|
作者
Atanassov, Krassimir T. [1 ]
Kacprzyk, Janusz [2 ]
Angelova, Nora A. [3 ]
机构
[1] Bulgarian Acad Sci, Inst Biophys & Biomed Engn, Dept Bioinformat & Math Modelling, Acad G Bonchev Str,Block 105, Sofia 1113, Bulgaria
[2] Polish Acad Sci, Syst Res Inst, 6 Newelska Str, PL-01447 Warsaw, Poland
[3] Sofia Univ, Fac Math & Informat, 5 James Bourchier Blvd, Sofia 1164, Bulgaria
关键词
Axiom; Intuitionistic fuzzy logic; Quantum logic;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In 1936 G. Birkhoff and J. von Neumann introduced the concept of a Quantum Logic. In 2007 M. Pavicic and N. Megill introduced one of the axioms of this logic. The Intuitionistic Fuzzy Logic (IFL) is an extension of L. Zadeh's fuzzy logic. The IFL is used as a tool for the interpretation of quantum logic axioms of Pavicic and Megill. Initially, we use the most popular forms of the IFL-operations implication and negation, and the conjunction and disjunction generated by them. Subsequently, we provide illustrations with use of other IFL-operations for quantum logic axioms interpretation. The advantages of these interpretations and potential directions for further research are discussed, e.g., the possibility of extending the quantum logic axioms in the directions of temporal and modal logics, the possibility for using other types of logical operations, and others.
引用
收藏
页码:343 / 354
页数:12
相关论文
共 50 条
  • [31] 2 RESULTS IN INTUITIONISTIC FUZZY-LOGIC
    GARGOV, GK
    ATANASSOV, KT
    DOKLADI NA BOLGARSKATA AKADEMIYA NA NAUKITE, 1992, 45 (12): : 29 - 31
  • [32] Satisfiability in intuitionistic fuzzy logic with realistic tautology
    Rushdi, Muhammad A. M.
    Rushdi, Ali M. A.
    Zarouan, Mohamed
    Ahmad, Waleed
    KUWAIT JOURNAL OF SCIENCE, 2018, 45 (02) : 15 - 21
  • [33] Intuitionistic Fuzzy Logic Control for Heater Fans
    Akram M.
    Shahzad S.
    Butt A.
    Khaliq A.
    Mathematics in Computer Science, 2013, 7 (3) : 367 - 378
  • [34] Inference in Extensions of Intuitionistic Logic as Fuzzy Computing
    Sakharov, Alexander
    INTELLIGENT AND FUZZY SYSTEMS, INFUS 2024 CONFERENCE, VOL 1, 2024, 1088 : 592 - 600
  • [35] A Quantum Interpretation of Bunched Logic & Quantum Separation Logic
    Zhou, Li
    Barthe, Gilles
    Hsu, Justin
    Ying, Mingsheng
    Yu, Nengkun
    2021 36TH ANNUAL ACM/IEEE SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE (LICS), 2021,
  • [36] A Refined Interpretation of Intuitionistic Logic by Means of Atomic Polymorphism
    José Espírito Santo
    Gilda Ferreira
    Studia Logica, 2020, 108 : 477 - 507
  • [37] A Refined Interpretation of Intuitionistic Logic by Means of Atomic Polymorphism
    Santo, Jose Espirito
    Ferreira, Gilda
    STUDIA LOGICA, 2020, 108 (03) : 477 - 507
  • [38] Simplification and independence of axioms of fuzzy logic systems IMTL and NM
    Pei, DW
    FUZZY SETS AND SYSTEMS, 2005, 152 (02) : 303 - 320
  • [39] Fuzzy propositional logic and two-sided (Intuitionistic) fuzzy propositions
    Ciftcibasi, T
    Altunay, D
    FUZZ-IEEE '96 - PROCEEDINGS OF THE FIFTH IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1-3, 1996, : 432 - 438
  • [40] Completeness of the propositions-as-types interpretation of intuitionistic logic into illative combinatory logic
    Dekkers, W
    Bunder, M
    Barendregt, H
    JOURNAL OF SYMBOLIC LOGIC, 1998, 63 (03) : 869 - 890