Multiple Solutions for Problems Involving p(x)-Laplacian and p(x)-Biharmonic Operators

被引:0
|
作者
Sahbani, Abdelhakim [1 ]
Ghanmi, Abdeljabbar [1 ]
Chammem, Rym [1 ]
机构
[1] Univ Tunis Manar, Fac Sci, Math Dept, Tunis 2092, Tunisia
关键词
p(x)-biharmonic operator; p(x)-Laplacian; symmetric moun- tain pass theorem; generalized Sobolev space; NONTRIVIAL SOLUTIONS; VARIABLE EXPONENT; FUNCTIONALS; EXISTENCE;
D O I
10.15407/mag20.02.235
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider the following p(x)-biharmonic problem with Hardy nonlinearity: <span style="color:rgba(0, 0, 0, 0.87)">Delta 2p ( x )</span><span style="color:rgba(0, 0, 0, 0.87)">u </span><span style="color:rgba(0, 0, 0, 0.87)">-</span><span style="color:rgba(0, 0, 0, 0.87)">Delta p ( x )</span><span style="color:rgba(0, 0, 0, 0.87)">u </span><span style="color:rgba(0, 0, 0, 0.87)">= </span><span style="color:rgba(0, 0, 0, 0.87)">lambda</span><span style="color:rgba(0, 0, 0, 0.87)">(| u|p ( x ) - 2u)/delta( x)2p ( x )</span><span style="color:rgba(0, 0, 0, 0.87)">+ </span><span style="color:rgba(0, 0, 0, 0.87)">f</span><span style="color:rgba(0, 0, 0, 0.87)">( </span><span style="color:rgba(0, 0, 0, 0.87)">x </span><span style="color:rgba(0, 0, 0, 0.87)">, </span><span style="color:rgba(0, 0, 0, 0.87)">u </span>) in Omega, u= 0 on partial derivative ohm, <span style="color:rgba(0, 0, 0, 0.87)">|del</span><span style="color:rgba(0, 0, 0, 0.87)">u</span><span style="color:rgba(0, 0, 0, 0.87)">|p (( x ) - 2)</span><span style="color:rgba(0, 0, 0, 0.87)">partial derivative u/partial derivative n</span><span style="color:rgba(0, 0, 0, 0.87)">= </span><span style="color:rgba(0, 0, 0, 0.87)">g</span><span style="color:rgba(0, 0, 0, 0.87)">( </span><span style="color:rgba(0, 0, 0, 0.87)">x </span><span style="color:rgba(0, 0, 0, 0.87)">, </span><span style="color:rgba(0, 0, 0, 0.87)">u ) </span> on partial derivative ohm, <span style="background-color:inherit"> where Omega c R (N) (N > 3), Delta (p(x)) is the p(x)-Laplacian and Delta (2)(p(x)) is the p(x)biharmonic operator. More precisely, under some appropriate conditions on the nonlinearities f and g, we combine the variational methods with the theory of the generalized Lebesgue and Sobolev spaces to prove the existence and the multiplicity of solutions.</span>
引用
收藏
页码:235 / 249
页数:15
相关论文
共 50 条
  • [21] Multiple Solutions for a Class of Differential Inclusion System Involving the (p(x), q(x))-Laplacian
    Ge, Bin
    Shen, Ji-Hong
    ABSTRACT AND APPLIED ANALYSIS, 2012,
  • [22] Discontinuous elliptic problems involving the p(x)-Laplacian
    Bonanno, Gabriele
    Chinni, Antonia
    MATHEMATISCHE NACHRICHTEN, 2011, 284 (5-6) : 639 - 652
  • [23] Remarks on eigenvalue problems involving the p(x)-Laplacian
    Fan, Xianling
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 352 (01) : 85 - 98
  • [24] NO-FLUX BOUNDARY PROBLEMS INVOLVING p(x)-LAPLACIAN-LIKE OPERATORS
    Cabanillas Lapa, Eugenio
    Pardo Rivera, Victor
    Quique Broncano, Jose
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2015,
  • [25] Multiple solutions for nonlocal elliptic problems driven by p(x)-biharmonic operator
    Liao, Fang-Fang
    Heidarkhani, Shapour
    Moradi, Shahin
    AIMS MATHEMATICS, 2021, 6 (04): : 4156 - 4172
  • [26] Multiple solutions for the p(x)-Laplacian problem involving critical growth with aparameter
    Yang Yang
    Jihui Zhang
    Xudong Shang
    Boundary Value Problems, 2013 (1)
  • [27] Multiple solutions for a parametric Steklov problem involving the p(x)-Laplacian operator
    Abdou, Aboubacar
    Gazibo, Mohamed Karimou
    Marcos, Aboubacar
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2025, (04) : 1 - 27
  • [28] Multiple solutions for a class of p(x)-Laplacian equations involving the critical exponent
    Zhang, Xing
    Zhang, Xia
    Fu, Yongqiang
    ANNALES POLONICI MATHEMATICI, 2010, 98 (01) : 91 - 102
  • [29] Multiple solutions for the p(x)-Laplacian problem involving critical growth with a parameter
    Yang, Yang
    Zhang, Jihui
    Shang, Xudong
    BOUNDARY VALUE PROBLEMS, 2013,
  • [30] EXISTENCE RESULTS FOR PROBLEMS INVOLVING THE p(x)-BIHARMONIC OPERATOR
    Messaoudi, Abdellatif
    MATHEMATICAL REPORTS, 2023, 25 (04): : 527 - 542