Multiple Solutions for Problems Involving p(x)-Laplacian and p(x)-Biharmonic Operators

被引:0
|
作者
Sahbani, Abdelhakim [1 ]
Ghanmi, Abdeljabbar [1 ]
Chammem, Rym [1 ]
机构
[1] Univ Tunis Manar, Fac Sci, Math Dept, Tunis 2092, Tunisia
关键词
p(x)-biharmonic operator; p(x)-Laplacian; symmetric moun- tain pass theorem; generalized Sobolev space; NONTRIVIAL SOLUTIONS; VARIABLE EXPONENT; FUNCTIONALS; EXISTENCE;
D O I
10.15407/mag20.02.235
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider the following p(x)-biharmonic problem with Hardy nonlinearity: <span style="color:rgba(0, 0, 0, 0.87)">Delta 2p ( x )</span><span style="color:rgba(0, 0, 0, 0.87)">u </span><span style="color:rgba(0, 0, 0, 0.87)">-</span><span style="color:rgba(0, 0, 0, 0.87)">Delta p ( x )</span><span style="color:rgba(0, 0, 0, 0.87)">u </span><span style="color:rgba(0, 0, 0, 0.87)">= </span><span style="color:rgba(0, 0, 0, 0.87)">lambda</span><span style="color:rgba(0, 0, 0, 0.87)">(| u|p ( x ) - 2u)/delta( x)2p ( x )</span><span style="color:rgba(0, 0, 0, 0.87)">+ </span><span style="color:rgba(0, 0, 0, 0.87)">f</span><span style="color:rgba(0, 0, 0, 0.87)">( </span><span style="color:rgba(0, 0, 0, 0.87)">x </span><span style="color:rgba(0, 0, 0, 0.87)">, </span><span style="color:rgba(0, 0, 0, 0.87)">u </span>) in Omega, u= 0 on partial derivative ohm, <span style="color:rgba(0, 0, 0, 0.87)">|del</span><span style="color:rgba(0, 0, 0, 0.87)">u</span><span style="color:rgba(0, 0, 0, 0.87)">|p (( x ) - 2)</span><span style="color:rgba(0, 0, 0, 0.87)">partial derivative u/partial derivative n</span><span style="color:rgba(0, 0, 0, 0.87)">= </span><span style="color:rgba(0, 0, 0, 0.87)">g</span><span style="color:rgba(0, 0, 0, 0.87)">( </span><span style="color:rgba(0, 0, 0, 0.87)">x </span><span style="color:rgba(0, 0, 0, 0.87)">, </span><span style="color:rgba(0, 0, 0, 0.87)">u ) </span> on partial derivative ohm, <span style="background-color:inherit"> where Omega c R (N) (N > 3), Delta (p(x)) is the p(x)-Laplacian and Delta (2)(p(x)) is the p(x)biharmonic operator. More precisely, under some appropriate conditions on the nonlinearities f and g, we combine the variational methods with the theory of the generalized Lebesgue and Sobolev spaces to prove the existence and the multiplicity of solutions.</span>
引用
收藏
页码:235 / 249
页数:15
相关论文
共 50 条
  • [31] EXISTENCE OF MULTIPLE SOLUTIONS FOR A p(x)-BIHARMONIC EQUATION
    Li, Lin
    Ding, Ling
    Pan, Wen-Wu
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2013,
  • [32] p(x)-biharmonic operator involving the p(x)-Hardy inequality
    El Khalil, Abdelouahed
    El Moumni, Mostafa
    Alaoui, Moulay Driss Morchid
    Touzani, Abdelfattah
    GEORGIAN MATHEMATICAL JOURNAL, 2020, 27 (02) : 233 - 247
  • [33] EXISTENCE AND NONEXISTENCE OF SOLUTIONS TO NONLINEAR GRADIENT ELLIPTIC SYSTEMS INVOLVING (p(x),q(x))-LAPLACIAN OPERATORS
    Saifia, Ouarda
    Velin, Jean
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2014,
  • [34] Multiple solutions for eigenvalue problems involving the (p, q)-Laplacian
    Pucci, Patrizia
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2023, 68 (01): : 93 - 108
  • [35] Solutions for Neumann boundary value problems involving p(x)-Laplace operators
    Yao, Jinghua
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 68 (05) : 1271 - 1283
  • [36] Solutions for Steklov boundary value problems involving p(x)-Laplace operators
    Allaoui, Mostafa
    El Amrouss, Abdel Rachid
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2014, 32 (01): : 163 - 173
  • [37] Ground state solutions for a class of elliptic Dirichlet problems involving the p(x)-Laplacian
    Ge, Bin
    Zhuge, Xiang-Wu
    Yuan, Wen-Shuo
    ANALYSIS AND MATHEMATICAL PHYSICS, 2021, 11 (03)
  • [38] Ground state solutions for a class of elliptic Dirichlet problems involving the p(x)-Laplacian
    Bin Ge
    Xiang-Wu Zhuge
    Wen-Shuo Yuan
    Analysis and Mathematical Physics, 2021, 11
  • [39] Existence of an unbounded branch of the set of solutions for Neumann problems involving the p(x)-Laplacian
    Hwang, Byung-Hoon
    Lee, Seung Dae
    Kim, Yun-Ho
    BOUNDARY VALUE PROBLEMS, 2014,
  • [40] Multiplicity of Positive Solutions for a Class of Inhomogeneous Neumann Problems Involving the p(x)-Laplacian
    Fan, Xianling
    Deng, Shao-Gao
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2009, 16 (02): : 255 - 271