Multiple solutions for a parametric Steklov problem involving the p(x)-Laplacian operator

被引:0
|
作者
Abdou, Aboubacar [1 ]
Gazibo, Mohamed Karimou [1 ]
Marcos, Aboubacar [2 ]
机构
[1] Univ Abdou Moumouni, Ecole Normale Super, Dept Math, Niamey, Niger
[2] Univ Abomey Calavi, Inst Math & Sci Phys, Porto Novo, Benin
关键词
Steklov problem; p ( x )-Laplacian operator; generalized Lebesgue-Sobolev spaces; variational method; Mountain Pass Theorem; Fountain Theorem; Dual Fountain Theorem; VARIABLE EXPONENT; DIRICHLET PROBLEMS; EXISTENCE; EQUATIONS; SPACES; EIGENVALUES; SPECTRUM;
D O I
10.14232/ejqtde.2025.1.4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the existence and multiplicity of weak solutions for a Steklov problem involving p(x)-Laplacian operator in a bounded domain ohm subset of R-N (N >= 2) with smooth boundary partial derivative ohm. The boundary equation is perturbed with some weight functions belonging to approriate generalized Lebesgue spaces and two real parameters. Our arguments are based on variational method, using "Mountain Pass Theorem", "Fountain Theorem" and "Dual Fountain Theorem" combined with the critical points theory, we prove several existence results.
引用
收藏
页码:1 / 27
页数:27
相关论文
共 50 条
  • [1] Existence of solutions for a Steklov problem involving the p(x)-Laplacian
    Anane, Aomar
    Chakrone, Omar
    Zerouali, Abdellah
    Karim, Belhadj
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2014, 32 (01): : 205 - 213
  • [2] Multiplicity of weak solutions for the Steklov systems involving the p(x)- Laplacian operator
    Khaleghi, A.
    Safari, F.
    FILOMAT, 2024, 38 (21) : 7541 - 7549
  • [3] Existence and Multiplicity of Solutions for a Steklov Eigenvalue Problem Involving The p(x)-Laplacian-like Operator
    Boukhsas, A.
    Karim, B.
    Zerouali, A.
    Chakrone, O.
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2024, 42
  • [4] On the superlinear Steklov problem involving the p(x)-Laplacian
    Ayoujil, Abdesslem
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2014, (38) : 1 - 13
  • [5] Multiple solutions for a Kirchhoff-type problem involving the p(x)-Laplacian operator
    Cammaroto, F.
    Vilasi, L.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (05) : 1841 - 1852
  • [6] Existence and multiplicity of solutions for some Steklov problem involving (p1(x), p2(x))-Laplacian operator
    Chammem, Rym
    Sahbani, Abdelhakim
    APPLICABLE ANALYSIS, 2023, 102 (03) : 709 - 724
  • [7] EXISTENCE AND MULTIPLICITY OF SOLUTIONS FOR A STEKLOV PROBLEM INVOLVING THE P(X)-LAPLACE OPERATOR
    Allaoui, Mostafa
    El Amrouss, Abdel Rachid
    Ourraoui, Anass
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2012,
  • [8] THREE SOLUTIONS TO A STEKLOV PROBLEM INVOLVING THE WEIGHTED p(.)-LAPLACIAN
    Aydin, Ismail
    Unal, Cihan
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2021, 51 (01) : 67 - 76
  • [9] Multiple solutions for a (p, q)-Laplacian Steklov problem
    Boukhsas, A.
    Zerouali, A.
    Chakrone, O.
    Karim, B.
    ANNALS OF THE UNIVERSITY OF CRAIOVA-MATHEMATICS AND COMPUTER SCIENCE SERIES, 2020, 47 (02): : 357 - 368
  • [10] Multiple solutions for a class of problems involving the p(x)-Laplacian operator
    Vicente de Sousa, Karla Carolina
    Tavares, Leandro S.
    APPLICABLE ANALYSIS, 2022, 101 (15) : 5415 - 5423