Multiple solutions for a parametric Steklov problem involving the p(x)-Laplacian operator

被引:0
|
作者
Abdou, Aboubacar [1 ]
Gazibo, Mohamed Karimou [1 ]
Marcos, Aboubacar [2 ]
机构
[1] Univ Abdou Moumouni, Ecole Normale Super, Dept Math, Niamey, Niger
[2] Univ Abomey Calavi, Inst Math & Sci Phys, Porto Novo, Benin
关键词
Steklov problem; p ( x )-Laplacian operator; generalized Lebesgue-Sobolev spaces; variational method; Mountain Pass Theorem; Fountain Theorem; Dual Fountain Theorem; VARIABLE EXPONENT; DIRICHLET PROBLEMS; EXISTENCE; EQUATIONS; SPACES; EIGENVALUES; SPECTRUM;
D O I
10.14232/ejqtde.2025.1.4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the existence and multiplicity of weak solutions for a Steklov problem involving p(x)-Laplacian operator in a bounded domain ohm subset of R-N (N >= 2) with smooth boundary partial derivative ohm. The boundary equation is perturbed with some weight functions belonging to approriate generalized Lebesgue spaces and two real parameters. Our arguments are based on variational method, using "Mountain Pass Theorem", "Fountain Theorem" and "Dual Fountain Theorem" combined with the critical points theory, we prove several existence results.
引用
收藏
页码:1 / 27
页数:27
相关论文
共 50 条
  • [21] Multiple solutions for the p(x)-Laplacian problem involving critical growth with a parameter
    Yang, Yang
    Zhang, Jihui
    Shang, Xudong
    BOUNDARY VALUE PROBLEMS, 2013,
  • [22] On a Robin type problem involving p(x)-Laplacian operator
    Ayoujil, Abdesslem
    Ourraoui, Anass
    GEORGIAN MATHEMATICAL JOURNAL, 2022, 29 (01) : 13 - 23
  • [23] Solutions of nonlinear problems involving p(x)-Laplacian operator
    Yucedag, Zehra
    ADVANCES IN NONLINEAR ANALYSIS, 2015, 4 (04) : 285 - 293
  • [24] Existence of solutions for a nonhomogeneous Dirichlet problem involving p(x)-Laplacian operator and indefinite weight
    Marcos, Aboubacar
    Abdou, Aboubacar
    BOUNDARY VALUE PROBLEMS, 2019, 2019 (01):
  • [25] Existence and multiplicity of solutions for p(x)-Laplacian problem with Steklov boundary condition
    Khaleghi, A.
    Razani, A.
    BOUNDARY VALUE PROBLEMS, 2022, 2022 (01):
  • [26] Resonant Steklov eigenvalue problem involving the (p, q)-Laplacian
    A. Zerouali
    B. Karim
    O. Chakrone
    A. Boukhsas
    Afrika Matematika, 2019, 30 : 171 - 179
  • [27] Resonant Steklov eigenvalue problem involving the (p, q)-Laplacian
    Zerouali, A.
    Karim, B.
    Chakrone, O.
    Boukhsas, A.
    AFRIKA MATEMATIKA, 2019, 30 (1-2) : 171 - 179
  • [28] Multiple solutions for a dirichlet problem involving the p-Laplacian
    Cammaroto, F.
    Chinni, A.
    Di Bella, B.
    DYNAMIC SYSTEMS AND APPLICATIONS, 2007, 16 (04): : 673 - 679
  • [29] Nonhomogeneous p(x)-Laplacian Steklov problem with weights
    Hsini, Mounir
    Irzi, Nawal
    Kefi, Khaled
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2020, 65 (03) : 440 - 454
  • [30] Solutions for a Singular Elliptic Problem Involving the p(x)-Laplacian
    Khanghahi, R. Mahdavi
    Razani, A.
    FILOMAT, 2018, 32 (14) : 4841 - 4850