Groups whose non-normal subgroups are either nilpotent or minimal non-nilpotent

被引:0
|
作者
Dastborhan, Nasrin [1 ]
Mousavi, Hamid [1 ]
机构
[1] Univ Tabriz, Fac Math Sci, Dept Pure Math, Tabriz, Iran
关键词
Meta-Ni-Hamilponian; Para-Nil-Hmiltonian;
D O I
10.1007/s11587-024-00870-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Nil be the class of nilpotent groups and G be a group. We call G a meta-Nil-Hamiltonian group if any of its non-Nil subgroups is normal. Also, we call G a para-Nil-Hamiltonian group if G is a non-Nil group and every non-normal subgroup of G is either a Nil-group or a minimal non-Nil group. In this paper we investigate the class of finitely generated meta-Nil-Hamiltonian and para-Nil-Hamiltonian groups.
引用
收藏
页码:869 / 882
页数:14
相关论文
共 50 条
  • [41] The structure of non-nilpotent CTI-groups
    Mousavi, Hamid
    Rastgoo, Tahereh
    Zenkov, Viktor
    JOURNAL OF GROUP THEORY, 2013, 16 (02) : 249 - 261
  • [42] CLASSES OF GROUPS WITH MINIMALLY NON-NILPOTENT CRITICAL GROUPS
    KRAMER, OU
    MANUSCRIPTA MATHEMATICA, 1979, 27 (02) : 113 - 123
  • [43] A note on a finite group with all non-nilpotent maximal subgroups being normal
    Li, Na
    Shi, Jiangtao
    Italian Journal of Pure and Applied Mathematics, 2019, (42): : 700 - 702
  • [44] A note on a finite group with all non-nilpotent maximal subgroups being normal
    Li, Na
    Shi, Jiangtao
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2019, (42): : 700 - 702
  • [45] FINITE NON-NILPOTENT GENERALIZATIONS OF HAMILTONIAN GROUPS
    Shen, Zhencai
    Shi, Wujie
    Zhang, Jinshan
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2011, 48 (06) : 1147 - 1155
  • [46] The non-nilpotent graph of a semigroup
    Jespers, E.
    Shahzamanian, M. H.
    SEMIGROUP FORUM, 2012, 85 (01) : 37 - 57
  • [47] Finite non-cyclic nilpotent group whose number of subgroups is minimal
    Meng, Wei
    Lu, Jiakuan
    RICERCHE DI MATEMATICA, 2024, 73 (01) : 191 - 198
  • [48] Finite non-cyclic nilpotent group whose number of subgroups is minimal
    Wei Meng
    Jiakuan Lu
    Ricerche di Matematica, 2024, 73 : 191 - 198
  • [49] The non-nilpotent graph of a semigroup
    E. Jespers
    M. H. Shahzamanian
    Semigroup Forum, 2012, 85 : 37 - 57
  • [50] ON THE HOMOTOPY OF NON-NILPOTENT SPACES
    HAUSMANN, JC
    MATHEMATISCHE ZEITSCHRIFT, 1981, 178 (01) : 115 - 123